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r Influence of climate on vegetation
assemblages

r How does the past inform our predictions of
the future?
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Study system: Fossil pollen from lake
sediments captures a diverse plant community




Study system: Fossil pollen from lake
sediments captures a diverse plant community

> @ Picea Pinus Quercus

® o young A B c

Time

old Gilllet al. 2009

0 30 & 9 20 4 20 40 60
OReFatlve ,&bundance




Fossil pollen: proxy for vegetation of eastern
North America over the past 21,000 years
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Fossil pollen: proxy for vegetation of eastern
North America over the past 21,000 years
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Are these changes linked to climate?
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CCSM: Over the last 21 kyr

TMAX during the LGM (21 kyr)

CLIMATIC VARIABLES

* TMAX: Max. Quarter Temperature } i
WDEI: Annual Water Deficit |
* PMIN: Min. Quarter Precipitation r ‘
*  PMAX: Max. Quarter Precipitation

* ETR: Ann. Evapotranspiration Ratio
e AET: Ann. Actual Evapotranspiration _.i 6

* Spearman<0.7

(plus many other variables)

Liu et al. 2009, Science; Lorenz et al. 2016, Scientific Data



What is the influence of climate on community
turnover across space and time?

r For a single time slice, build a model that
relates community turnover across space to
climatic turnover across space

r Repeat this for multiple time slices over the past
14,000 years

r Examine how climate, as a whole and for
individual variables, influences community
turnover

Blois et al. 2013, Ecography



Generalized dissimilarity modeling

GDM:

“...an extension of matrix regression, designed specifically to
accommodate two types of nonlinearity commonly
encountered in large-scaled ecological data sets: (1) the
curvilinear relationship between increasing ecological
distance, and observed compositional dissimilarity, between
sites; and (2) the variation in the rate of compositional
turnover at different positions along environmental gradients.”

Ferrier et al. 2007



Is the influence of climate (or other factors)
stable through time?
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r Climate influences community turnover at all times over the
past 14,000 years

r Climate is not evenly influential through time
Blois et al. 2013, Ecography



Fitted climate-turnover relationships
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Fitted relationships for individual climate variables
changes through time
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Fitted relationships for individual climate variables
changes through time
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Fitted relationships for individual climate variables
changes through time
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What is the influence of climate on community
turnover across space and time?

r Present-day correlates of vegetation turnover are
not the same as those of the past

r Variation unexplained by climate is higher in past
than present

r Fitted relationships of individual climate variables
changes through time

Blois et al. 2013, Ecography



I

r How does the past inform our predictions of
the future?
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1. Build SDMs
Build CLMs
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Maguire et al. 2016, Proc. Royal Soc B



1. Build SDMs : : :
Build CLMs > 2. Project to a different time—

3. Compare
predictions
vs. observations
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Comparing SDMs vs CLMs through time
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Comparing SDMs vs CLMs through time
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Maguire et al. 2016, Proc. Royal Soc B
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Model performance declines as climate novelty
Increases...
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Model performance declines as climate novelty
increases... LESS so for CLMS
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T How does future climate novelty compare to
past climate novelty?

T What is the expected robustness of different
modeling approaches?

Fitzpatrick, Blois, et al. 2018



Climate novelty through time: all of North America
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Climate novelty through time: eastern North America

Distance

0.5-

0.4-

0.3-

0.2-

0.1-

2.0-

1.5-

1.0-

0.5-

—20000

—15000

past future

~10000 -5000 0 2020 2040
time (past = years, future = AD)

2060

— ACCESS1-3

— CanESM2

— CESM1-CAM5
— CNRM-CM5

— CSIRO-Mk3-6-0
— GFDL-CM3

— GISS-E2-R

— HadGEM2-ES
— inmcm4

— |PSL-CM5A-MR
— MIROC5

— MRI-CGCMS3

— CCSM

eolBdWY YLIoN

2080
Fitzpatrick, Blois, et al. 2018



Climate novelty through time: eastern North America
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Model performance & future novelty

DISCRIMINATION CALIBRATION

L - SDM L - SDM

-=CLM
0.8-

AUC .

e”
-
-
L ] -
-
-
-

0.6-

' ' v 0.6~ ' ! v
0.0 05 1.0 0.0 05 1.0

Climatic distance Climatic distance
(Euclidean distance in PCA space) (Euclidean distance in PCA space)

Fitzpatrick, Blois, et al. 2018



Model performance & future novelty
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Model performance & future novelty
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How might future climate novelty impact
model performance?

T How does future climate novelty compare to past
climate novelty?

I Future climates will be at least as novel as climates from
8,000 - 14,000 years ago, and for some regions, will far
exceed the magnitude of novelty observed over the last
21,000 years.

T What is the expected robustness of different
modeling approaches?

r Our results suggest that based on climate distance
alone, model performance will not be much better than
random by late 21st century.

o Small, but measurable benefit to CLMs over SDMs.

Fitzpatrick, Blois, et al. 2018
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What factors structure populations and
communities across space and time?

Extent (m?)
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Phylogeny & Biogeography

Quaternary Paleoecology

Community Ecology

r Goal: describe

biodiversity patterns
across the Yandscape
today, and
understand the
lorocesses that have
d to those patterns

Question: If the
patterns continually
shift, how does that
influence inference
of the underlying
processes?




