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 SUMMARY. The traditional likelihood-based test for differences in multivariate dispersions is known to be
 sensitive to nonnormality. It is also impossible to use when the number of variables exceeds the number
 of observations. Many biological and ecological data sets have many variables, are highly skewed, and are
 zero-inflated. The traditional test and even some more robust alternatives are also unreasonable in many
 contexts where measures of dispersion based on a non-Euclidean dissimilarity would be more appropriate.
 Distance-based tests of homogeneity of multivariate dispersions, which can be based on any dissimilarity
 measure of choice, are proposed here. They rely on the rotational invariance of either the multivariate
 centroid or the spatial median to obtain measures of spread using principal coordinate axes. The tests are
 straightforward multivariate extensions of Levene's test, with P-values obtained either using the traditional
 F-distribution or using permutation of either least-squares or LAD residuals. Examples illustrate the utility
 of the approach, including the analysis of stabilizing selection in sparrows, biodiversity of New Zealand fish
 assemblages, and the response of Indonesian reef corals to an El Nifio. Monte Carlo simulations from the
 real data sets show that the distance-based tests are robust and powerful for relevant alternative hypotheses
 of real differences in spread.

 KEY WORDS: Dissimilarity; Heterogeneity; Levene's test; Multivariate analysis; Permutation tests; Principal
 coordinates; Robust methods.

 1. Introduction

 A fundamental concept in the analysis of multivariate data
 is the extent to which groups of observations may differ in
 their relative dispersions. For example, stabilizing selection
 acting on organisms should reduce the multivariate hetero-
 geneity of their morphometric characteristics (Bumpus, 1898)
 and increases or decreases in the multivariate dispersion of
 ecological species data can be an important symptom of en-
 vironmental stress (Warwick and Clarke, 1993; Chapman,
 Underwood, and Skilleter, 1995). Traditional likelihood-based
 tests of homogeneity of variance-covariance matrices (e.g.,
 Box, 1949) are, however, extremely sensitive to departures
 from the assumption of multivariate normality (Layard, 1974;
 Olson, 1974; O'Brien, 1992) and also require that the num-
 ber of observations per group be relatively large compared
 to the number of variables. Despite the development of cer-
 tain more robust procedures (Tiku and Balakrishnan, 1985;
 O'Brien, 1992), such methods nevertheless still require, like
 the traditional tests, that dispersion be measured essentially
 using either Euclidean or Mahalanobis distance, which may
 not always be appropriate.

 In many biological applications, the assumption of normal-
 ity is unreasonable. This is particularly so in the analysis of
 ecological community data, where variables consist of counts
 of abundances of individual species (Taylor, 1961; McArdle,
 Gaston, and Lawton, 1990). In such data sets, the number
 of variables often exceeds the number of observations, zeros
 are common due to rare or patchy species, and abundance

 distributions tend to be strongly right skewed. Furthermore,
 community dissimilarity is generally better measured by non-
 Euclidean measures, such as the Jaccard or Bray-Curtis co-
 efficients (Faith, Minchin, and Belbin, 1987; Clarke, 1993).
 Thus, a robust test for homogeneity of multivariate disper-
 sions is needed, which allows dispersions to be measured on
 the basis of any distance or dissimilarity measure of choice
 and which is robust to skewed or zero-inflated data.

 Several robust dissimilarity-based tests for equality of mul-
 tivariate locations have been described (Mielke, Berry, and
 Johnson, 1976; Smith, Pontasch, and Cairns, 1990; Clarke,
 1993; Pillar and Orl6ci, 1996; Gower and Krzanowski, 1999;
 Legendre and Anderson, 1999; Anderson, 2001). These tests
 derive their validity and robustness through the use of per-
 mutation or randomization procedures, but are nevertheless
 sensitive to differences in dispersion among groups. Thus, an
 analogous dissimilarity-based test of dispersions is therefore
 needed, both in its own right and as a complement to such
 tests of location effects.

 In a univariate context, Levene's test for homogeneity-
 essentially an analysis of variance (ANOVA) done on devia-
 tions from group means-was found to be quite robust to de-
 partures from normality (Levene, 1960). Brown and Forsythe
 (1974) suggested that medians be used instead of means for
 Levene's test, and this approach was found to be the most
 robust and useful of 56 possible tests for homogeneity in ex-
 tensive simulations done by Conover, Johnson, and Johnson
 (1981). In a multivariate context, Van Valen (1978) proposed
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 a multivariate analogue to Levene's test as an ANOVA on
 the Euclidean distances of individual observations to their

 group centroid. O'Brien (1992) and Manly (1994) suggested
 that this approach could be made more robust by replacing
 centroids with multivariate medians, where they defined the
 multivariate median as the median for each variable within

 each group.
 Haldane (1948), Gower (1974), and Brown (1983) noted

 that there is more than one way to define a multivariate me-
 dian. More particularly, Gower (1974) provided an algorithm
 for obtaining the spatial median of a group of points, which he
 called the "mediancentre," defined as that point in the mul-
 tivariate space such that the sum of the distances from each
 observation in the group to that point is minimized. This spa-
 tial (or geometric) median is invariant to rotational changes in
 the axes, while the vector of medians of individual variables is
 not. In contrast, the vector of medians of individual variables
 is invariant to monotonic transformations of the variables, but
 the spatial or geometric median is not (Haldane, 1948). The
 property of rotational invariance possessed by the spatial me-
 dian, a property also shared by the centroid, is exploited here
 in order to develop a robust test of dispersion on the basis of
 any dissimilarity measure.

 A dissimilarity-based multivariate generalization of Lev-
 ene's test is proposed, following the ideas of Van Valen
 (1978), O'Brien (1992), and Manly (1994) who used Eu-
 clidean distances. Two possible test statistics are suggested:
 the ANOVA F-statistic comparing distances to centroids or
 that which compares distances to spatial medians. A unique
 feature is that the analysis may be based on any dissimilarity
 measure of choice, through the use of principal coordinates
 (Gower, 1966). P-values are then obtained either using the
 traditional F-distribution, or by permutation of appropriate
 residuals.

 The utility of the technique is demonstrated first by refer-
 ence to a set of well-behaved multivariate morphometric data
 on sparrows due to Bumpus (1898), for which it was found
 to be equally as powerful as the traditional likelihood test.
 Its use, including empirical type I error and power, is then
 demonstrated for two sets of ecological community data: the
 percentage cover of Indonesian coral species responding to an
 El Nifio event (Warwick, Clarke, and Suharsono, 1990) and
 spatial variation in abundances of New Zealand temperate
 reef fishes (Anderson and Millar, 2004). For the coral and fish
 data sets, the traditional test would be impossible, due to the
 number of variables, and direct Euclidean-based approaches
 would be unreasonable, due to the excessive number of zeros
 and the skewness of individual variables.

 Retrospective power analyses for individual studies have
 been justifiably criticized in the literature (e.g., Hoenig and
 Heise, 2001; Lenth, 2001). However, the use of simulations to
 compare power among several statistical methods for partic-
 ular alternative hypotheses is valid and useful, especially for
 multivariate tests such as those examined here, where poten-
 tial alternative hypotheses have so many facets (Olson, 1976;
 Rencher, 1998). Although to do extensive power comparisons
 was not the aim here, measures of empirical power for several
 sets of data having different degrees of heterogeneity and dif-
 ferent error distributions yielded some useful initial insights
 into the relative power of these tests.

 2. Description of Tests

 2.1 Levene's Test and Some Multivariate Analogues

 In the univariate case, let xij be a set of j = 1,..., ni obser-
 vations in each of i -- 1,... ,g groups. Levene's test statis-
 tic is then the ANOVA F-ratio comparing the g groups, cal-
 culated on the absolute deviations zij = Ix, - xi.| from the
 group means xti. = j- nl xj. The z's are not independent:
 for example, in the most extreme case, n = 2, the two val-
 ues of z are equal. However, nonindependence of the z's is
 not a serious problem in most cases with reasonable sample
 sizes, as the correlation between them for two observations in
 the same group is sufficiently small, of order O(N-2) where
 N = -g ni (Levene, 1960; Miller, 1968).

 For the multivariate case, let xij be the vector which de-
 notes the point for the jth observation in the ith group in the
 multivariate space of p variables. Furthermore, let A(., .) de-
 note the Euclidean distance between two points. The centroid
 vector ci for group i is defined as the point that minimizes
 the sum of squared distances to points within that group, i.e.,
 jni1 A2(Xij, Ci).
 One multivariate analogue to Levene's test is to perform

 ANOVA on the Euclidean distances from individual points
 within a group to their group centroid,

 C = A(xij, ci). (1)
 A P-value for the F-statistic calculated on distances to cen-

 troids (Fe) may be obtained either by using the traditional
 F-distribution (Fc(t), which assumes the errors in the zc's
 are approximately normal), or by using a permutation proce-

 dure (Fc(p)). For the latter, permutation of the least-squares (LS) residuals, rK = (xij - ci) is appropriate in this con-
 text (Anderson and Robinson, 2001). For data with normally
 distributed errors, the permutation test and normal-theory
 test will give similar results (Manly, 1997). It has been sug-
 gested that the normal-theory test gains its validity by virtue
 of its agreement with the permutation test (Fisher, 1936;
 Kempthorne, 1955; Edgington, 1995).

 A more robust version of Levene's test, suggested by Brown
 and Forsythe (1974), is to analyze deviations from medians
 instead. One multivariate analogue of this would be to calcu-
 late ANOVA on distances from the spatial median,

 zm = A(Xj, mi). (2)

 The spatial median mi is defined as the point that mini-
 mizes the sum of distances to points within that group, i.e.,

 jniI A(xij, mi) (Gower, 1974; Brown, 1983). Once again, a P-value associated with the test statistic (Fm) may be ob-
 tained either by using the traditional F-distribution (Fm(t)) or
 by using a permutation procedure (Fm(p)). In this case, how-
 ever, it is permutation of the least-absolute-deviation (LAD)
 residuals, rg = (xj - mi), that is appropriate (Cade and
 Richards, 1996).

 Note that the use of an appropriate permutation procedure
 for the test of either Fe (using LS residuals) or Fm (using LAD
 residuals) avoids making any particular assumption regard-
 ing the distribution of the distances, zc or zm, respectively.
 Only the exchangeability of points in the multivariate space
 under the null hypothesis of equal dispersions after center-
 ing (on either the group centroid or on its spatial median)
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 is assumed. The relative robustness of using permutation of
 residuals for the univariate case has been demonstrated for

 the classical variance ratio test (Boos and Brownie, 1989;
 Boos, Janssen, and Veraverbeke, 1989) and for Levene's test
 (Francis and Manly, 2001).

 2.2 Extension to Any Dissimilarity Using
 Principal Coordinates

 The approach may be extended to base the analysis on any
 distance or dissimilarity measure of choice through the use
 of principal coordinates (Gower, 1966). Let D = [d~et] be a
 square symmetric matrix of distances calculated between ev-
 ery pair of observations, ? = 1,..., N and ?' = 1,..., N. In
 the case of the Euclidean distance measure,

 de,- = A(xet, ze) = Z(xek - xe'k)2. Sk=1

 Alternatively, some other more appropriate measure may be
 calculated as the basis for the analysis, such as the measure
 proposed by Bray and Curtis (1957),

 p

 Z IXek - Xe'k
 -

 dee, - k=l
 (x+k + xe'k)
 k=1

 or a scale-invariant binomial deviance (Anderson and Millar,
 2004),

 dee =, - Xk loge (k ) X'k loge I Sk S\k Sk k=1

 where Sk = (xek + xe'k). Either of these latter two functions
 may be meaningful for measuring ecological dissimilarity be-
 tween sites when data consist of species abundances (nonneg-
 ative integers). Note also that the Bray-Curtis and binomial
 deviance measures are semimetric and so, like many other
 functions used in ecological applications, do not fulfill the tri-
 angle inequality (Gower and Legendre, 1986). Legendre and
 Gallagher (2001) demonstrated how several other ecologically
 meaningful dissimilarity measures (such as the chi-squared,
 chord, or Hellinger distance) can be obtained through
 the calculation of Euclidean distance on suitably trans-
 formed variables. For measures such as Euclidean distance or

 Bray-Curtis, some form of standardization or transformation
 of variables may also be done before calculating distances,
 so that variables have equal weight or are placed on similar
 scales (Faith et al., 1987; Clarke, 1993).

 To obtain principal coordinates, first let matrix A = [aee,],
 where aee, = -ld,. Centering this matrix in the manner of
 Gower (1966) gives

 G = [gee,] = [ae,' - at.e - a.,e + a..],

 where ae. is the mean for row ?, a.e, is the mean for column ?',
 and li. is the overall mean of the values in matrix A. Next,
 spectral decomposition of the G matrix yields

 N

 G = Aeqeq ,
 e=1

 where A1 >... >? AN are the ordered eigenvalues of G and
 ql,..., qN are the corresponding orthonormal eigenvectors.
 Principal coordinate axes (column vectors) are then obtained
 by scaling each axis qt by the square root of its correspond-
 ing eigenvalue, ut = (Ae)1/2qe. Gower (1966) has shown how
 Euclidean distances among points using principal coordinate
 axes scaled in this way replicates the original inter-point dis-
 similarities in matrix D.

 Now, unless the dissimilarities are indeed distances (Eu-
 clidean embeddable), matrix G may not be nonnegative defi-
 nite and so some eigenvalues may be negative. This generally
 occurs when the distance function used is not a full metric,
 but is only semimetric. Negative eigenvalues may also be pro-
 duced by metric coefficients that are not Euclidean. Note that
 we still have trace(G) = EL1 Ae, even if some eigenvalues are
 negative. In this case, the axes of matrix Q can be split into

 two sets, Q = [ql q q, qr+l q ... N], such that Al > . > Ar,
 0 and 0 > Ar+I ... > AN, corresponding to the nonnegative
 and the negative eigenvalues, respectively. For eigenvectors
 corresponding to nonnegative eigenvalues, ? = 1, ..., r, we de-

 note scaled axes as u- = (At)1/2qe. For eigenvectors r = r +
 1,... , N corresponding to negative eigenvalues, we may scale
 by the square root of the absolute value of At and subsequently
 multiply by (-1)1/2, recognizing that these correspond to axes
 in imaginary space, i.e., (-1)1/2uf = ( 1Ael)1/2qe.

 The two sets of principal coordinate axes can be consid-
 ered separately and then recombined after squaring to calcu-
 late distances between any two points in the principal coordi-
 nate space, with squared distances calculated from imaginary
 axes contributing negatively. Thus, let U = [U+ I U-] be the
 N x N matrix of principal coordinate axes, where row u+ is a
 row giving coordinates along the 1, ... , r real axes for the jth
 observation point in the ith group and row u- gives the coor-
 dinates for that point along the r + 1,..., N imaginary axes
 (if any). The original dissimilarity between two points xij and
 xm, can be recovered in the principal coordinate space using
 Euclidean distances, as

 Adii 2 + )- A , )
 Furthermore, we can calculate a centroid for each of the i =
 1,..., g groups in each of the real and imaginary spaces as
 c+ and c-, respectively, in the usual way. Then, the distance
 (or dissimilarity) from the ijth point to its centroid in the full
 principal coordinate space is

 jz. = -= (3)
 where we will consider only the positive square root. Similarly,
 using spatial medians instead of centroids, we have

 z. A2 (u+ m 2 \ A m2( ), (4)
 with mt being the spatial median for the ith group using real
 axes and m- being the spatial median for the ith group using
 imaginary axes.
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 The test for homogeneity of dispersions then simply con-
 sists of doing univariate one-way ANOVA on the z's (defined
 as either (3) or (4)), with or without the use of permuta-
 tions, as described in Section 2.1 above. Although neither (3)
 nor (4) precludes the possibility of either ZC or zm being com-
 plex values, in practice this would be highly unlikely to occur,
 provided a reasonable dissimilarity measure was chosen. If D
 contains Euclidean distances on the original variables to be-
 gin with, then (3) will be equal to (1) and (4) will be equal
 to (2).

 3. Applications

 3.1 Stabilizing Selection in Sparrows

 Bumpus (1898) recorded the morphological characteristics of
 sparrows in Rhode Island after a severe storm. The subset of
 data given in Manly (1994) and analyzed here consists of five
 of these variables (total length, alar extent, and the lengths of
 the beak and head, the humerus, and the keel of the sternum,
 all in mm) for female sparrows only, 21 of which survived the
 storm and 28 of which did not survive. Under the general
 theory of stabilizing selection, birds having morphologies dis-
 tant from the average sparrow should be more susceptible to
 being killed in the storm. The prediction is, therefore, that
 the group of birds that died should have a greater multivari-
 ate dispersion in their morphometric characteristics than the
 birds that survived.

 A principal component analysis of the normalized data in-
 deed shows a slight pattern of greater dispersion for the spar-
 rows that had died (Figure 1, top). A test of the null hy-
 pothesis of no difference in the multivariate dispersions of the
 two groups, using deviations from spatial medians and 9999
 permutations of LAD residuals, suggested there was some ev-
 idence for a difference (Fm = 3.818, P = 0.0470), with the av-
 erage Euclidean distance to the spatial median being 1.72 for
 the survivors and 2.23 for those that died (Figure 1, bottom).
 The P-value obtained using the traditional F-distribution was
 similar, P = 0.0567, and nearly equivalent results were also

 obtained using distances to centroids, Fc = 3.869, with ei- ther the tables (P = 0.0551) or permutation of LS residuals
 (P = 0.0541). On the other hand, the traditional likelihood
 test (Box, 1949; see Rencher, 1998, p. 138-140 for details)
 provided no evidence against the null hypothesis of equal
 variance-covariance matrices (logM = -5.893, F = 0.692,
 P = 0.795). This result was probably due to the strong simi-
 larity between groups in the correlation structure among the
 variables.

 Monte Carlo simulation was used to empirically estimate
 the power and type I error for each of the tests. Data were
 simulated from a multivariate normal distribution, which was
 reasonable for these morphometric variables. Means and vari-
 ances for each variable for each group and the pooled sam-
 ple correlation matrix were estimated from the raw data. For
 type I error, 5000 data sets were simulated (each having sam-
 ple sizes like the original data of nl = 21 and n2 = 28) where
 the means and variances estimated for group 1 were used for
 all observations (i.e., the null hypothesis was true). For each
 simulation, the data were first normalized for each variable
 and then all four distance-based tests were calculated on the

 basis of the Euclidean distance measure, along with Box's M-
 statistic, with 999 permutations being used to obtain P-values

 Bumpus's sparrows
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 Figure 1. Principal component ordination of the sparrow
 data (top), showing sparrows that either survived (S) or
 died (D), and plot of the Euclidean distances from individ-
 ual points in the full dimensional space to their group spatial
 median (bottom), along with the group average ? 1 SE.

 in the case of the permutation procedures. The number of re-
 jections of the null hypothesis (using a significance level of
 a = 0.05) was counted, yielding empirical rates of type I er-
 ror. Note that the rejection rate follows a binomial distribu-
 tion. Thus, for 5000 trials, the 99% confidence interval for the
 type I error is (0.042-0.058). The same basic approach was
 used to examine power, but for this, the 5000 data sets were
 drawn using different mean and variance parameters for each
 group, as estimated from the data, although the same pooled
 correlation matrix was used for all simulations. The mean

 vectors for groups 1 and 2 were

 pi = [157.4,241.0,31.43,18.50,20.81]

 A2 = [158.4,241.6,31.48, 18.45, 20.84]

 and the vectors of variances for groups 1 and 2 were

 S2 = [11.05,17.50,0.531,0.176,0.575]

 2 = [15.07,32.55,0.728, 0.434, 1.321].
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 Table 1

 Empirical type I error and power for the tests in each of three
 example data sets. The tests done were Box's M test (where

 possible) and the F-statistic using either distances to centroids
 (Fc) or medians (Fm), with P-values obtained using either the

 tables (t) or an appropriate permutation procedure (p).

 Fc(t) Fm(t) Fc(p) Fm(p) Box's M

 Sparrows Type I error 0.060 0.047 0.055 0.055 0.054
 power 0.518 0.485 0.504 0.505 0.492

 Fish Type I error 0.060 0.046 0.049 0.047
 power 1.000 1.000 1.000 1.000

 Corals Type I error 0.063 0.026 0.053 0.047
 power 0.977 0.947 0.957 0.946

 Thus, the null hypothesis of equal dispersions was false in
 this case, and the number of rejections (again at a = 0.05)
 was counted for each method, yielding empirical measures of
 power.

 A common correlation matrix was used even under a false

 null hypothesis because these tests, by their very nature, are
 not expected to have any power to detect differences in cor-
 relation structure among groups. They are designed only to
 detect differences in the overall spread of points in the multi-
 variate space, not differences in either shape or direction. Per-
 mutation tests for correlation structure have been discussed

 by Krzanowski (1993), but are not considered in detail here.
 The results indicated that the type I error for all of the test

 procedures is intact for this situation (Table 1). The empirical
 power of all of these tests was comparable, between 0.485 and
 0.518.

 3.2 Spatial Variation in New Zealand Fish

 Spatial variation in temperate reef fish assemblages was exam-
 ined in a study along the northeastern coast of New Zealand
 (Anderson and Millar, 2004). There were eight sites (sep-
 arated by hundreds of meters) within each of four loca-
 tions along the coast (separated by hundreds of kilometers):
 Berghan Point, Home Point, Leigh, and Hahei. At each site,
 SCUBA divers swam along each of 10 transects (25 m x 5
 m), recording abundances of individual fish species. Abun-
 dances were pooled at the site level for analysis. Sampling
 has been repeated in each of 4 years (2000-2004) and yearly
 variation is not significant (see Anderson and Millar, 2004, for
 details), resulting in a total of ni = 32 multivariate observa-
 tions per location. At Berghan Point, one more site was added
 in two of the years, thus yielding a sample size of nl = 34 for
 this location alone. A total of 57 fish species were recorded.
 Fundamental interest lies in comparing the variability in the
 fish assemblages among the four locations. More particularly,
 the historical and present biogeography of the coastline leads
 to the prediction that there should be greater biodiversity
 (and thus greater multivariate dispersion) of assemblages at
 the northern locations (i.e., Berghan Point and Home Point),
 particularly at Home Point, which is most exposed to the in-
 fluences of the East Auckland current.

 Fish abundance data such as these are highly skewed and
 contain many zeros. Euclidean distance is inappropriate here

 for these reasons, and also because it is not generally consid-
 ered useful for measuring the ecological dissimilarity among
 species assemblages (Faith et al., 1987; Clarke, 1993). Also,
 the traditional test statistic simply cannot be calculated for
 these data because of the large number of variables. These
 data were analyzed on the basis of the scale-invariant bino-
 mial deviance dissimilarity (Anderson and Millar, 2004).

 A plot of the first two principal coordinate axes from the
 dissimilarity matrix (also called a metric multidimensional
 scaling or MDS plot) showed an apparent pattern of greater
 dispersion of the fish assemblages at Home Point compared
 to those at Leigh, although not many other patterns could
 easily be seen on this plot (Figure 2, top). The test provided
 very strong support for a difference in dispersion among the

 New Zealand fish
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 Figure 2. Principal coordinate ordination of the fish data
 (top), showing assemblages from Berghan Point (B), Home
 Point (H), Leigh (L), and Hahei (A), and plot of the dis-
 similarities, as measured by the scale-invariant binomial de-
 viance, from individual points in the full dimensional space
 to their group spatial median (bottom), along with the group
 average ? 1 SE.
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 Table 2

 Pairwise comparisons (with no adjustments for multiple tests) for the New Zealand fish data set using
 binomial deviance dissimilarities from spatial medians and 9999 permutations of LAD residuals. Also given is

 the empirical power for each of the four distance-based test procedures, as in Table 1.

 t P Fc(t) Fm(t) Fc(p) Fm(p)

 Home Pt. vs. Leigh 8.008 0.000 1.000 1.000 1.000 1.000
 Home Pt. vs. Hahei 3.843 0.000 0.984 0.981 0.983 0.982

 Home Pt. vs. Berghan Pt. 3.312 0.002 0.931 0.918 0.920 0.919
 Hahei vs. Leigh 3.077 0.004 0.713 0.689 0.693 0.688
 Berghan Pt. vs. Leigh 2.843 0.007 0.883 0.871 0.870 0.869
 Berghan Pt. vs. Hahei 0.111 0.913 0.117 0.105 0.110 0.107

 four groups using either distances to centroids (F, = 15.812)
 or distances to spatial medians (Fm = 13.967), regardless of
 whether the traditional F-distribution or permutation proce-
 dures were used (P < 0.0001 in all cases). Thus, there were
 important differences in the biodiversity of fish assemblages
 as measured by multivariate spread. The average distance to
 the spatial median was significantly larger for assemblages at
 Home Point, followed by those at Berghan Point and Hahei,
 which did not differ appreciably, with the smallest average dis-
 persion being found at Leigh (Table 2; Figure 2, bottom).
 Type I error and power for the four methods were exam-

 ined using the same general approach as that described for
 the sparrow data, except that here data were simulated from
 a multivariate Poisson-lognormal distribution (Aitchison and
 Ho, 1989). This was appropriate for these data, being highly
 overdispersed counts. Means and variances estimated from the
 original data were set to be either the same as those estimated
 for Berghan Point for all four groups (type I error), or the
 same as those estimated separately for each group (power).
 Power was also investigated for each of the pairwise tests. A
 single pooled correlation matrix obtained from the full data
 set was used in all cases. For each simulation, the same sam-
 ple sizes as occurred in the original data were generated and
 analyses were done on the basis of the scale-invariant binomial
 deviance dissimilarity measure.
 In the comparison of all four groups, power was equally

 high (100%) for all methods (Table 1). The type I error of the
 test was slightly, but not badly, inflated for the test based on
 distances to centroids, using either the traditional or permu-
 tation P-values. The empirical power for each pairwise com-
 parison generally indicated the following rank order of the

 tests: Fc(t) > Fc(p) > Fm(p) > Fm(t) (Table 2). These differ- ences were very slight, however, and within the range of error
 expected under simulation.

 3.3 Response of Indonesian Corals to El Nifio

 Warwick et al. (1990) described a study of coral assemblages
 at South Tikus Island, Indonesia. The percentage cover of
 75 coral species along each of 10 replicate transects was ob-
 tained in each of several years from 1981 to 1988. An oceano-
 graphic El Nifio event occurred in 1982-1983. Primary inter-
 est lies in determining and characterizing the effect of this
 event on the coral assemblages. These data included a great
 many zeros, due to the occasional appearance of rare species.
 For this reason, and to reduce the importance of some of the

 more common and prolific species, Warwick et al. (1990) per-
 formed multivariate analyses on the matrix of Bray-Curtis
 dissimilarities, calculated from square root-transformed
 data.

 There appeared to be much greater variability in the coral
 assemblages for the 1983 survey, compared to the relative
 dispersion observed either before (1981) or after (1985) the
 El Nifio event (Figure 3, top). The overall tests confirmed
 this general observed pattern (Fc = 9.097, Fm = 6.292, P <
 0.001 in all cases). Furthermore, pairwise comparisons demon-
 strated the effect to be due substantially to the multivariate
 dispersion in 1983 being higher than that observed in other
 years (Table 3; Figure 3, bottom). More detailed analyses re-
 vealed that this was largely a consequence of coral bleach-
 ing and loss of species in 1983. This led Warwick and Clarke
 (1993) to propose that increased multivariate dispersion, as
 measured by the Bray-Curtis dissimilarity, may in general be
 a sign of increased environmental stress.

 Once again, type I error and power associated with the
 tests were measured using simulations. In this case, one of the
 most salient characteristics of the original data was the pre-
 dominance of zeros. Therefore, data were simulated for each
 variable within each group in a two-step process. The basic
 idea was first to model the presence/absence of a species, and
 then to model its quantitative percentage cover, conditional
 on its presence. First, a Bernoulli random value was drawn,
 according to the probability of a nonzero value occurring as
 estimated from the data. Second, if a 1 was drawn in this first
 step, then a normal random variable with mean and variance
 estimated from the nonzero values only was then drawn and
 truncated to the nearest integer, otherwise the value was set at
 zero. This truncated normal mixture produced zero-inflated
 data quite similar to the observed data.

 The type I error of the test (using parameters equal to those
 observed in 1981 for all four groups) was somewhat inflated
 (although not badly) for Fe(t) (Table 1). In contrast, the test
 using the Fm(t) was quite conservative. Both test statistics
 were robust, however, when P-values were instead obtained
 using a permutation procedure.

 The pairwise comparisons in this example (Table 3) gave
 quite a lot more range in empirical power values than in the

 previous example. Although Fc(t) demonstrated the great- est rejection rates (Table 3), this was probably due, to some
 extent, to its lack of robustness in maintaining type I er-
 ror (Table 1). Either of the test statistics, when used with
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 Figure 3. Nonmetric multidimensional scaling ordination of
 the coral data (top), where assemblages from a given year in
 the interval 1981-1988 are indicated using the corresponding
 integer 1-8, and plot of the dissimilarities, as measured by
 Bray-Curtis on square root-transformed data, from individual
 points in the full dimensional space to their group spatial
 median (bottom), along with the group average ? 1 SE.

 permutation techniques, however, provided correct type I er-
 ror and adequate power, while the approach using Fm com-
 bined with the traditional F-distribution to obtain P-values

 was generally a slightly more conservative test (Tables 1-3).

 4. Discussion

 The distance-based tests described here provide rigorous tests
 for homogeneity of multivariate dispersions when the tradi-
 tional test is either inappropriate or impossible. This includes
 situations when data are nonnormal, when the measure of dis-
 persion of interest is not the Euclidean distance, and/or when
 the number of variables exceeds the number of observations.

 The tests were found to be equally as or more powerful than

 Table 3

 Pairwise comparisons (with no adjustments for multiple tests)
 for the Tikus Island coral data set using Bray-Curtis

 dissimilarities from spatial medians and 9999 permutations of
 LAD residuals. Also given is the empirical power for each of

 the four distance-based test procedures, as in Table 1.

 t P Fc(t) Fm(t) Fc(p) Fm(p)

 '83 vs. '81 5.883 0.000 0.980 0.950 0.968 0.949
 '83 vs. '85 5.464 0.000 0.988 0.971 0.978 0.968
 '83 vs. '88 4.487 0.001 0.869 0.792 0.827 0.794
 '83 vs. '84 3.656 0.002 0.672 0.564 0.618 0.571
 '83 vs. '87 3.517 0.000 0.807 0.712 0.750 0.711
 '88 vs. '85 2.070 0.047 0.329 0.255 0.294 0.276
 '84 vs. '85 1.782 0.099 0.542 0.446 0.483 0.461
 '81 vs. '85 1.295 0.213 0.205 0.164 0.183 0.181
 '87 vs. '85 1.173 0.264 0.260 0.180 0.216 0.190
 '88 vs. '81 1.105 0.222 0.113 0.069 0.108 0.094
 '84 vs. '81 0.835 0.387 0.338 0.233 0.295 0.259
 '88 vs. '87 0.513 0.566 0.076 0.046 0.068 0.057
 '84 vs. '87 0.420 0.670 0.124 0.083 0.095 0.087
 '87 vs. '81 0.220 0.824 0.115 0.071 0.098 0.081
 '88 vs. '84 0.055 0.953 0.127 0.080 0.109 0.097

 the traditional likelihood-based statistic when data were mul-

 tivariate normal and alternative hypotheses were restricted to
 differences in overall dispersion or spread (variances) only. It is
 readily acknowledged that the distance-based tests considered
 here would not be sensitive to alternative hypotheses regard-
 ing differences in correlation or covariance structure among
 groups. For some robust methods directed at such alterna-
 tives, see O'Brien (1992) and Krzanowski (1993).

 One distance-based approach described here utilizes the
 multivariate median defined in a particular way: a spatial me-
 dian that has invariance under rotation of the axes (Gower,
 1974; Brown, 1983). This allows the analysis to be based on
 non-Euclidean dissimilarities, as distances to spatial medians
 can, therefore, be calculated in a principal coordinate space.
 Although it would be possible in Euclidean space to calculate
 distances to an elementwise multivariate median, as suggested
 by O'Brien (1992) and Manly (1994), the lack of rotational
 invariance for the median defined in this way makes it im-
 possible to consider generalizing its use for any dissimilarity
 function through the framework of principal coordinates. The
 deepest location (Struyf and Rousseeuw, 2000), defined as the
 point with maximal halfspace depth (Tukey, 1975), also lacks
 rotational invariance. The flip side of this issue is that the
 spatial median, in its turn, like the centroid, is not invariant
 to transformations of the variables. Therefore, the choice of
 transformation will have very important repercussions on the
 proposed distance-based tests of dispersion for a given set of
 data. This is not terribly surprising, however, and may even
 be considered to be a reasonable quality for the proposed
 tests, as it is well known that univariate tests of homogeneity
 are also affected strongly by transformations. Although per-
 haps less well recognized, the choice of dissimilarity measure
 will also have extremely important effects on the observed
 patterns and tests of multivariate dispersion. Thus, careful
 thought regarding such choices is warranted.
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 Simulations based on real data sets have shown that all

 of the proposed tests perform reasonably well, even in the
 presence of large numbers of variables, serious overdisper-
 sion, truncation, or zero inflation. The tests that provided
 the best balance between power and robustness, at least for
 these data sets, were those which relied on permutation pro-
 cedures to obtain P-values. Thus, the tests using an F-ratio
 to compare distances to centroids (Fe) or distances to spa-
 tial medians (Fm), with P-values obtained using permutation
 of LS or LAD residuals, respectively, are both recommended.
 While the latter may provide a slight advantage for its poten-
 tially greater robustness in some circumstances, the former
 may provide slightly greater power and may provide a way
 to examine dispersions in response to a more complex model
 partitioning (e.g., for multiway ANOVA designs), but this is
 clearly a topic for future research.
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