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Abstract. Regional conservation planning can often make more effective use of sparse biological data
by linking these data to remotely mapped environmental variables through statistical modelling. While
modelling distributions of individual species is the best known and most widely used approach to such
modelling, there are many situations in which more information can be extracted from available data by
supplementing, or replacing, species-level modelling with modelling of communities or assemblages. This
paper provides an overview of approaches to community-level modelling employed in a series of major
land-use planning processes in the northeast New South Wales region of Australia, and evaluates how well
communities and assemblages derived using these techniques function as surrogates in regional conserva-
tion planning. We also outline three new directions that may enhance the effectiveness of community-level
modelling by: (1) more closely integrating modelling with traditional ecological mapping (e.g. vegetation
mapping); (2) more tightly linking numerical classification and spatial modelling through application of
canonical classification techniques; and (3) enhancing the applicability of modelling to data-poor regions
through employment of a new technique for modelling spatial pattern in compositional dissimilarity.

Key words: Biodiversity, Communities, Northeast New South Wales, Regional conservation planning,
Statistical modelling, Surrogates

Introduction

Social and economic factors often place severe limits on the total area of land that can
be set aside, or otherwise managed, for conservation of biodiversity within any given
region. Care must therefore be taken to direct conservation effort to those parts of a
region that are assessed as being of highest conservation priority – a process referred
to here as ‘regional conservation planning’. The past two decades have seen increas-
ing interest in the application of ‘systematic’ approaches to such planning (Margules
and Pressey 2000). The aim of these approaches is to design a system of conservation
areas that is representative of the diversity encompassed by a region, and to configure
these areas to promote long-term persistence of the elements of biodiversity they
contain.
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Systematic conservation planning requires information on the spatial distribution
of biodiversity. Yet such information is often grossly incomplete, particularly at the
species and genetic levels. Planning therefore commonly employs those entities (e.g.
species) for which we do have reasonable distributional information as ‘surrogates’
for biodiversity as a whole (Noss 1990). Even for these surrogate species, or groups
of species, distributional data may be confined to records obtained at a small set of
survey or collection sites separated by extensive areas of unsurveyed land (Maddock
and du Plessis 1999). Statistical modelling of biological survey data in relation to
remotely mapped environmental variables – e.g. terrain, climate, substrate or land-
cover variables – provides a powerful means of filling geographical gaps in the cover-
age of data. When coupled with geographical information system (GIS) technology,
such modelling enables biological distributions to be extrapolated across large re-
gions, thereby providing geographically complete information for conservation plan-
ning and other environmental applications (see reviews by Franklin 1995; Austin
1998; Guisan and Zimmermann 2000).

Modelling distributions of individual species is the best known and most widely
used approach to modelling and extrapolating relationships between biological and
environmental data. Much less attention has been given in the conservation planning
literature to other potential modelling strategies. This is unfortunate because, while
modelling of individual species performs well in some situations, there are other sit-
uations in which it may work less effectively than alternative modelling approaches
(Ferrier 2002). An individual species can be modelled successfully only if sufficient
locational data (or expert knowledge of habitat requirements) are available for that
species. Modelling of individual species is also a relatively time-consuming and ex-
pensive process. For these reasons, use of modelled distributions in regional conser-
vation planning is often restricted to a relatively small number of fine-filter (sensu
Noss 1987) or priority species – e.g. selected vertebrate or vascular plant species
of special conservation concern. Even if sufficient data and resources are available
to model a larger number of species, it may be difficult for planning and decision-
making processes to cope with the quantity and complexity of information generated
by such analyses. While modelling individual species can provide a good basis for
considering the particular needs of selected species in conservation planning, it may
not be the most effective way of addressing spatial pattern in biodiversity as a whole.
The latter might often be addressed more effectively by integrating spatial modelling
with numerical classification techniques designed to analyse patterns within large,
complex datasets.

Such integration allows better use to be made of all available data for all surveyed
species, not just selected priority species. The approach also alleviates potential prob-
lems associated with considering a large number of individual species in conservation
planning and decision-making, by reducing this complexity to a much smaller set of
higher-level entities – i.e. communities or assemblages. The principal disadvantage
of modelling communities or assemblages instead of species is that the approach
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may not allow planning to give due consideration to the needs of individual species
of particular conservation concern – e.g. threatened, focal or flagship species. The
distributions of such species may still warrant modelling on an individual basis, al-
lowing them to be considered as discrete entities in planning, alongside modelled dis-
tributions of communities or assemblages. By further combining these two modelling
approaches with more traditional data types (e.g. vegetation mapping), the coarse-
filter/fine-filter strategy (Noss 1987) is effectively extended to make maximum use
of all available information. Biodiversity as a whole is addressed using some combi-
nation of traditional land-class mapping and modelled distributions of communities
or assemblages, while individual species of particular concern are addressed using a
combination of locational records and modelled species distributions.

This paper provides an overview of community-level modelling work conducted
in the northeast New South Wales (NSW) region of Australia. It is the second in a
two-paper series describing approaches to deriving models for use in conservation
planning within this region. The first paper (Ferrier et al. 2002) focused on species-
level modelling. Both species-level and community-level modelling have played a
pivotal role in a series of government-led planning processes in northeast NSW during
the past 6 years, resulting in major additions to the region’s protected area system. The
extensive biological and environmental datasets established for northeast NSW have
also served as a test-bed for research on the performance of alternative modelling
approaches.

The paper starts by describing four basic strategies for integrating numerical clas-
sification and statistical modelling to predict distributions of communities or assem-
blages. We provide examples of how these strategies have been applied in northeast
NSW, and summarise the results of a recent study evaluating the effectiveness with
which communities or assemblages derived using these techniques function as sur-
rogates in regional conservation planning. We then outline three new directions in
community-level modelling that may enhance the effectiveness of the general ap-
proach, in northeast NSW and elsewhere, by: (1) more closely integrating modelling
with traditional ecological mapping (e.g. vegetation mapping); (2) more tightly link-
ing numerical classification and spatial modelling through application of canonical
classification techniques; and (3) enhancing the applicability of modelling to data-
poor regions through application of a new technique for modelling spatial pattern in
compositional dissimilarity.

Basic approaches to community-level modelling

Imagine a region in which one or more components of biodiversity (e.g. vascular
plants, birds, beetles) have been surveyed at a number of sites. At each site the pres-
ence or absence (or relative abundance) of species has been recorded, thereby gener-
ating a sites-by-species matrix. One possible strategy for analysing such data can be
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Figure 1. Major strategies for integrating numerical classification and modelling of communities or as-
semblages.

referred to as ‘classification-then-modelling’. In this strategy the data matrix is first
subjected to numerical classification to derive either groups of sites containing similar
species, or groups of species occurring at similar sites (Figure 1). The terminology
used to describe such groups is notoriously inconsistent. In conservation planning
applications within Australia, groups of sites derived from this type of analysis are
often referred to as ‘communities’, while groups of species are referred to as ‘species
assemblages’. However, given the inconsistency in usage of such terms within the
wider scientific community, we will here refer explicitly to the two types of groups
as ‘site-groups’ and ‘species-groups’.

Site-groups generated by numerical classification of survey data can be modelled
and extrapolated using techniques similar to those employed for modelling species
distributions (Ferrier et al. 2002). For example, generalised linear modelling (GLM,
McCullagh and Nelder 1989) or generalised additive modelling (GAM, Hastie and
Tibshirani 1990; Yee and Nelder 1989) can be used to model the probability of each
site-group occurring at a given location, as a function of mapped environmental vari-
ables (including, where available, land-cover attributes or classes mapped from aerial
photography or satellite imagery). Distributions of these site-groups are then extra-
polated across the entire region of interest. Each location (e.g. grid cell) in the region
is assigned to the site-group predicted to have the highest probability of occurrence
at that location. Alternatively, decision-tree modelling (Brieman et al. 1984; Moore
et al. 1991) can be used to generate discrete environmental rules for allocating grid
cells to site-groups. Regardless of the particular modelling technique, maps derived
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by modelling numerically classified site-groups can be employed in regional conser-
vation planning in the same manner as any other land classification (e.g. a traditional
vegetation map).

Species-groups generated by numerical classification of survey data can also be
modelled and extrapolated across an entire region of interest. In this case, the mod-
elled response for each species-group is the proportion of species (belonging to the
group) that occur, or are predicted to occur, at a given location. For example, if an
assemblage contains eight species then a modelled value of 0.5 for a location means
that four of the eight species are predicted to occur at that location. Unlike site-groups,
members of two or more species-group can occur at the same location. Modelling of
species-groups therefore generates a series of mapped layers (one for each group),
that can be employed in regional conservation planning in the same manner as mod-
elled distributions of individual species. Examples of previous applications of the
classification-then-modelling strategy include Moore et al. (1991) and Keith and Bed-
ward (1999) for modelling of site-groups, and McKenzie et al. (1989) for modelling
of species-groups.

A second strategy for modelling distributions of communities or assemblages can
be referred to as ‘modelling-then-classification’. The first step in this strategy is to
model and extrapolate the distributions of individual species included in the sites-
by-species matrix. This generates a mapped layer for each species indicating the
predicted probability of that species occurring within each and every grid cell in the
region. By restructuring these predictions as a large cells-by-species matrix they can
be subjected to numerical classification, thereby deriving either groups of grid cells
with similar predicted species or groups of species with similar predicted distribu-
tions (Figure 1). This strategy generates maps of the same form as those produced by
the classification-then-modelling strategy. The robustness of maps of site-groups or
species-groups derived by modelling-then-classification clearly depends on the ro-
bustness of the underlying species models. Examples of previous applications of
the modelling-then-classification strategy include Lenihan (1993), Austin (1998) and
Cawsey et al. (2002) for modelling of site-groups, and Nix (1991) and Lehmann et al.
(2002) for modelling of species-groups.

Applications in northeast NSW

The northeast NSW study region was described in the first paper of this series (Fer-
rier et al. 2002). Much of the modelling work to date has focused on the eastern
section of the region – an area of 79 000 km2 that encompasses most of the region’s
taller eucalypt forest and rainforest (see Figure 1 in Ferrier et al. 2002). The NSW
National Parks and Wildlife Service established an environmental GIS database for
northeast NSW in the late 1980s, and this has since undergone continual refinement.
The database contains a wide range of mapped and modelled layers pertaining to
topography, climate, substrate, vegetation cover and disturbance, most of which are
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stored at a 1 ha (100 m × 100 m) grid-cell resolution (Ferrier et al. 2000a, 2002).
Extensive field surveys of vascular flora, vertebrate fauna and selected components
of invertebrate fauna (mainly ground-dwelling arthropods) were conducted during
the early 1990s, with survey sites stratified to sample the environmental variation of
the region (Hines et al. 2000; Ferrier et al. 2002). By 1994, distributional models
had been derived for 1684 vascular plant species and 713 vertebrate animal species
(Ferrier et al. 2000c, 2002). These were GAM-based logistic regression models
fitted using the S-PLUS statistical package (MathSoft). Between 1995 and 1998,
models for individual species of conservation concern were combined with commu-
nity-level modelling to provide information for a series of government-led planning
processes designed to resolve a long-running conflict between the needs of commer-
cial forest harvesting and the protection of biodiversity, old growth and wilderness
values (Ferrier et al. 2002). The last of these processes – the Comprehensive Region-
al Assessment (1996–1998) – resulted in extensive additions to the region’s reserve
system.

Both of the community-level modelling strategies described in the preceding
section – classification-then-modelling and modelling-then-classification – were
applied in various ways to the biological and environmental data for northeast NSW,
generating maps for both site-groups and species-groups. Particular attention was
given to developing automated software tools for implementing the modelling-then-
classification strategy (Ferrier et al. 1999b). This was achieved by linking ArcView to
the pattern analysis package PATN (Belbin 1995). Special-purpose scripts developed
in ArcView constructed a cells-by-species matrix from a specified set of modelled
species distributions and passed this matrix to PATN. If the region of interest con-
tained too many grid cells for efficient processing in PATN then a random sample of
cells was extracted. The data matrix was then subjected to numerical classification by
calling appropriate PATN functions from ArcView. The parameters required to run
these functions (e.g. the number of site-groups or species-groups to be generated)
were specified using dialog boxes within ArcView. Relevant outputs from PATN
(i.e. the membership of each derived group, and the dendrogram describing the hi-
erarchical relationship between these groups) were automatically imported back into
ArcView. This information was then used to map the spatial distribution of each group
identified by PATN. In the case of site-group classifications a single grid layer was
generated in which each grid cell in the region was assigned to a single group. If a
grid cell had not been included in the sample of cells analysed within PATN then
the compositional dissimilarity between this cell and each group centroid was used
to assign the cell to its nearest group. In the case of species-group classifications a
separate grid layer was generated for each group. Each of these layers was derived by
averaging the modelled probability surfaces for all species included in the relevant
species-group.

Two examples of the application of this approach to modelling-then-classification
in northeast NSW are presented in Figures 2 and 3. In the first example (Figure 2)
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modelled distributions for 208 individual species of canopy trees were used to
derive and map 50 site-groups (or ‘communities’). The original analysis on which
this example is based mapped 198 groups, but these have been amalgamated to a 50-
group level for the purpose of the example. The classification was performed using the
ALOB non-hierarchical clustering algorithm within PATN (Bray–Curtis dissimilarity
measure), with the derived groups then subjected to hierarchical clustering to produce
the dendrogram. This particular classification played a vital role in an Interim Forest
Assessment conducted in 1995 and 1996, by generating estimates of the original
(i.e. pre-clearing) extent of vegetation communities within northeast NSW. These
estimates provided the primary basis for setting and evaluating vegetation protection
targets.

In the second example (Figure 3) modelled distributions for 44 species of verte-
brates endemic to northeast NSW were used to derive and map eight species-groups
(or ‘assemblages’). This classification was performed using a hierarchical clustering
algorithm based on the Two-Step dissimilarity measure (Austin and Belbin 1982).
This particular classification played an important role in the Comprehensive Regional
Assessment, where it was used to identify centres of endemism in northeast NSW
requiring special protection. Other classifications of vertebrate and vascular plant
assemblages have been employed more recently to help identify key habitats and
corridors within the region, as a basis for regional vegetation planning across all land
tenures within the region.

Evaluating modelled communities and assemblages as surrogates for biodiversity

In the preceding sections we have described four basic strategies for modelling
distributions of communities or assemblages: (1) classification-then-modelling of
site-groups, (2) classification-then-modelling of species-groups, (3) modelling-then-
classification of site-groups, and (4) modelling-then-classification of species-groups.
All of these approaches have been, or could be, used to derive coarse-filter biodi-
versity surrogates for use in regional conservation planning. To help provide some
guidance as to the relative efficacy of these alternatives, an earlier study evaluating the
performance of individual species models as surrogates for biodiversity (Ferrier and
Watson 1997; Ferrier et al. 2002) was more recently extended to evaluate approaches
to community-level modelling (Ferrier et al. 1999b).

This extended study employed the same 10 biological datasets as those used in
the original evaluation study – ants, beetles, spiders, reptiles, birds, bats, rainforest
canopy trees, rainforest understorey plants, open-forest canopy trees, and open-for-
est understorey plants (Ferrier and Watson 1997; Ferrier et al. 2002). The sites for
each biological group were again split randomly into a development sample and an
evaluation sample. Four new types of surrogates were derived for each biological
dataset: (1) site-groups derived by classification (Bray–Curtis dissimilarity measure
and UPGMA clustering) then modelling (GAM-based logistic regression modelling
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of each site-group, followed by assignment of each and every grid cell in the region
to the group with the highest predicted probability of occurring in that cell). Site-
group maps were derived at four levels of classification resolution: 5, 15, 50 and 150
groups. (2) Species-groups derived by classification (Two-Step dissimilarity measure
and UPGMA clustering) then modelling (GAM-based logistic regression modelling
of the proportion of species from a given species-group occurring at each site, with a
separate model produced for each group). Species-group maps were derived at three
levels of classification resolution: 5, 10 and 20 groups. (3) Site-groups derived by
modelling of individual species (GAM-based logistic regression) then classification
of grid cells into 5, 15, 50 and 150 groups. (4) Species-groups derived by modelling
of individual species then classification of these species into 5, 10 and 20 species
groups.

As in the original evaluation study (Ferrier and Watson 1997; Ferrier et al. 2002),
each of these surrogates was evaluated by selecting sites in the order that maximised
representation of diversity within the surrogate, and then using the actual survey data
for the sites to derive a species accumulation curve. For site-group surrogates the
site selected at each step was drawn from the group that had the lowest propor-
tion of its sites already selected. If two or more sites met this criterion then one
of these was selected at random. For species-group surrogates, sites were selected
using the approach described by Ferrier et al. (2002) for individual species model-
ling, except in this case predicted probabilities of occurrence for individual species
were replaced by predicted proportions of species within each species-group. A ‘spe-
cies accumulation index’ for each combination of surrogate and evaluation dataset
was derived by scaling the area under the accumulation curve (obtained using the
surrogate) in relation to two other curves – a ‘mean random curve’ estimated by
averaging a large number of individual random curves, each derived by selecting
sites in random order, and an ‘optimum curve’ derived by selecting sites using the
actual biological data in place of the surrogate. Bootstrapping was used to estimate
confidence limits for each observed value of the index. A more detailed explanation
of this evaluation technique is provided by Ferrier and Watson (1997) and Ferrier
(2002).

Presentation of full evaluation results for all combinations of surrogate approaches
and biological groups is beyond the scope of this paper (interested readers should
access Ferrier et al. 1999b). Selected results are summarised graphically in Figure 4.
This figure depicts results for the best-performing surrogate within each combina-
tion of surrogate type (e.g. site-groups derived by classification-then-modelling) and
biological group. In other words, while several different versions (i.e. different clas-
sification resolutions) of each surrogate type were evaluated, only the result for the
best-performing version is shown in Figure 4. The clearest trend exhibited by these re-
sults is that modelling of species-groups consistently performed better than modelling
of site-groups as a basis for selecting conservation areas. Furthermore, the perfor-
mance of species-group modelling was generally not far below that of individual spe-
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Figure 4. A summary of the performance of approaches to mapping communities or assemblages by
integrating numerical classification and modelling. The approaches were evaluated as potential surro-
gates for biodiversity, using independent survey data for 10 biological groups in northeast NSW.
SAI – Species Accumulation Index; M-C – modelling-then-classification; C-M – classification-then-mod-
elling; M-C-U – modelling-then-classification, but incorporating information on compositional dissimi-
larity between groups into the evaluation. The absence of a bar for a given combination of surrogate and
biological group indicates that this combination was not evaluated.

cies modelling. The order in which classification and modelling were conducted (i.e.
classification-then-modelling vs. modelling-then-classification) had a less consistent
effect on performance.

The poor performance of site-group surrogates in this study may reflect inadequa-
cies in the site selection algorithm employed in the evaluation, rather than inadequa-
cies in the surrogates themselves. The algorithm treated the site-groups within each
classification as discrete entities. No information on the relationships (i.e. dissimilari-
ties in biological composition) between these groups was employed in selecting sites.
While this approach reflects that commonly used in real-world conservation planning,
there is clearly room for improvement. Faith and Walker (1996a) and Woinarski et al.
(1996) have demonstrated the importance of considering information on composition-
al dissimilarities between site-groups when prioritising areas for conservation. As an
experiment we re-evaluated the performance of the modelling-then-classification site-
group approach for three biological groups (birds, open-forest canopy trees and open-
forest understorey plants) using an alternative site selection algorithm based on that
advocated by Faith and Walker (1996a). This algorithm uses information on compo-
sitional dissimilarities between site-groups to select sites in the order that maximises



2320

representation of overall diversity. As depicted in Figure 4, this approach greatly im-
proved the performance of site-group modelling, yielding results roughly equivalent
to those of species-group modelling. This type of consideration of relationships be-
tween site-groups or species-groups deserves greater attention in conservation plan-
ning. There is also potential to extend the measures of dissimilarity employed in such
analyses to incorporate information on the taxonomic or phylogenetic relationships
of the species involved (Faith 1996; Clarke and Warwick 1998).

This evaluation of approaches to modelling communities and assemblages in
northeast NSW has only scratched the surface of a very large and complex issue.
More work of this kind in other regions is required if we are to better understand
the relative strengths and weaknesses of possible modelling approaches.

New directions in community-level modelling

The community-level modelling strategies discussed so far, and depicted in Figure 1,
are those most commonly employed in regional conservation planning. However, they
are not the only possible strategies for community-level modelling, nor are they nec-
essarily the most appropriate strategies in all situations. We believe that there is still
considerable room for improvement in the development of approaches to community-
level modelling, and in the application of these approaches to regional planning. Our
research group is currently investigating a number of new directions in communi-
ty-level modelling that we feel show particular promise. We outline three of these
developments below.

Integrating statistical modelling with traditional ecological mapping

Derivation of mapped communities through statistical modelling may be viewed as an
alternative to more traditional forms of ecological mapping. In the latter, land-classes
such as ‘vegetation types’, ‘ecosystems’ or ‘habitats’ are often mapped by interpre-
tation of aerial photography or satellite imagery, supplemented by varying levels of
ground-truthing (Alexander and Millington 2000). Statistical modelling and tradi-
tional mapping approaches each have strengths and weaknesses. A major strength
of the statistical modelling approach is that both the classification of communities,
and the linking of these communities to remotely mapped variables, are performed
in a quantitative, explicit and repeatable manner. However, a potential weakness in
the approach may be an over-reliance on abiotic environmental predictors (terrain,
climate, substrate) to model and extrapolate distributions of communities. As in the
case of species-level modelling, discussed in the first paper of this series (Ferrier
et al. 2002), predictions based purely on abiotic variables may be unreliable if these
variables are not mapped at a sufficient level of spatial resolution and accuracy, or
if key variables are not considered in the modelling. Particular problems may arise
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if the current distribution of communities is a function not only of current environ-
mental conditions, but also of past conditions or disturbance patterns. For example,
the distribution of rainforest in northeast NSW can be only partly predicted by current
environmental conditions, because it has also been shaped by relatively stochastic fire
events occurring over many thousands of years (Ferrier et al. 2002). Yet the distribu-
tion of rainforest in this region can be mapped accurately by interpretation of aerial
photography or satellite imagery.

As in our work on species-level modelling (Ferrier et al. 2002) we view abio-
tic environmental variables, and attributes or classes discerned from aerial pho-
tography or satellite imagery, as complementary rather than competing sources of
information for use in mapping community distributions. Aerial photography and
satellite imagery may reveal patterns of community distribution that cannot be pre-
dicted using abiotic variables alone. On the other hand these same abiotic variables
may help to delineate (or separate) communities that cannot be reliably discrimi-
nated using only aerial photography or satellite imagery. The real challenge is to
find more effective ways of integrating all available sources of information –
biological survey data, abiotic environmental variables, aerial photography, satellite
imagery – to map communities within any given region. One means of achieving
this is to incorporate attributes or classes derived from aerial photography or satel-
lite imagery as additional predictors, alongside abiotic environmental variables, in
statistical modelling of community distributions. These additional predictors can be
employed in both the modelling-then-classification and classification-then-modelling
strategies described earlier in this paper (they can also be employed in the canonical
strategy described in the next section). Where the additional predictors are satel-
lite image spectral bands (or some transformation of these bands) then the resultant
modelling process can also be viewed, from an image processing perspective, as an
extended form of supervised image classification (Lees and Ritman 1991; Franklin
1995).

In many situations, particularly when employing information extracted from aerial
photography rather than satellite imagery, the additional predictors will not be con-
tinuous quantitative variables but will instead consist of nominal-scaled categories
– e.g. vegetation types or photo-pattern classes. If the number of such categories
is reasonably small then they may be simply treated as classes of a factor variable in
statistical modelling. This approach has been employed extensively in northeast NSW
as a means of incorporating broad vegetation types mapped from satellite imagery and
aerial photography (e.g. rainforest, moist eucalypt forest, dry eucalypt forest) into
both species-level and community-level modelling (Ferrier et al. 2000c, 2002). How-
ever, such an approach is rendered impracticable if the number of mapped classes is
increased to a point where many of the classes contain few, or no, survey sites. In this
situation the modelling may fail to detect real associations between communities and
mapped classes, and will therefore exhibit a high Type II error-rate and low statistical
power.
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As we have done for species-level modelling (Ferrier et al. 2002), we are cur-
rently investigating an approach to using expert opinion to more effectively integrate
complex land classifications (containing many classes) into modelling of communi-
ty distributions. The approach is based on the classification-then-modelling strategy
described earlier in this paper. The existing land classification is excluded from the
initial modelling – i.e. this modelling is performed using abiotic environmental vari-
ables alone. It is assumed that, as a result of the initial modelling, each community
will be predicted to have a certain probability of occurring in each grid cell within the
region of interest. In the original classification-then-modelling approach each grid
cell would then be assigned to the community for which this predicted probability
of occurrence is highest. In the extended approach, however, the assignment of grid
cells to communities is further constrained (or conditioned) by expert opinion as to
the likelihood of each community occurring within each class of an existing land
classification. This expert information is stored in a matrix, or look-up table, in which
each row corresponds to an existing land-class (e.g. a mapped vegetation type) and
each column corresponds to a community (see Figure 5). The values in the cells of the
table can be specified in one of two ways: (1) as zeros and ones, with a 0 indicating
that experts believe a given community cannot occur within a given land-class and

Figure 5. A diagrammatic illustration of an approach to using expert opinion to integrate statistical mo-
delling of community distributions (in relation to abiotic variables) with an existing land classification –
e.g. a vegetation map – derived from independent interpretation of aerial photography or satellite imagery.
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a 1 indicating that the community can occur within the land-class; or (2) as values
between 0 and 1, with each value indicating the proportion of a given land-class that
experts believe should be occupied by a given community (the values across each row
sum to 1).

When employing the first of these options the look-up table determines which
communities are allowed to occur in each grid cell of interest (according to the land-
class in which the cell is located), and the cell is then assigned to the community
from this set that has the highest predicted probability of occurrence (according
to the initial statistical modelling) (see also Figure 5). With the second option the
proportions in the table corresponding to the grid cell of interest are treated as prior
probabilities of each community occurring within that cell. Bayes’ Rule is used to
derive posterior probabilities of occurrence by combining these prior probabilities
with predicted probabilities of occurrence from the statistical modelling, in a simi-
lar manner to that described by Strahler (1980) and De Bruin and Gorte (2000).
Each cell is then assigned to the community with the highest posterior probability
of occurrence.

Regardless of which option is employed, this general approach provides a simple
and highly flexible means of employing expert opinion to integrate statistical mo-
delling of community distributions (in relation to abiotic variables) with an existing
land classification – e.g. a vegetation map – derived from independent interpretation
of aerial photography or satellite imagery. The approach not only can handle exist-
ing classifications containing a large number of classes but also can be applied to
situations in which different parts of a region of interest are covered by different
classifications. For example, in northeast NSW we are currently trialing the approach
as a way of extrapolating vegetation communities (derived from numerical classifica-
tion of floristic plot data and modelled in relation to abiotic environmental variables)
across areas covered by three different levels of existing vegetation mapping: (1)
detailed mapping of more than 100 vegetation types derived from interpretation of
1:25 000 aerial photography; (2) coarser mapping of less than 20 vegetation types,
also derived from aerial photograph interpretation; and (3) areas without any existing
vegetation mapping (including cleared land). Expert opinion is being used to specify
which communities can occur within each of the mapped vegetation types. These
communities are assigned a value of 1 in the relevant row of the look-up table, while
the other communities are assigned a value of 0. The table contains rows for all of
the vegetation types from the different classifications. Areas without any existing
vegetation mapping are treated as falling within a single ‘unmapped’ class. All com-
munities are assigned a value of 1 in the row corresponding to this class, which means
that grid cells in unmapped areas are assigned to communities purely on the basis
of predicted probabilities of occurrence from the statistical modelling. Rows corre-
sponding to mapped vegetation types contain a mixture of zeros and ones and these
types therefore play a role in constraining the assignment of grid cells to communities.
The number of zeros in the row corresponding to a given type will typically increase
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with increasing classification resolution and/or reliability of the available mapping.
This in turn increases the extent to which existing mapping will constrain predictions
from the statistical modelling.

A canonical classification approach to community-level modelling

We have recently developed and applied an alternative approach to community-lev-
el modelling in northeast NSW that integrates community classification and spatial
modelling within a single analysis, rather than performing these steps sequentially.
The approach employs a form of constrained or ‘canonical’ numerical classification
(sensu De Sarbo and Mahajan 1984; Gordon 1996). In the same way that canonical
ordination techniques (e.g. Canonical Correspondence Analysis; ter Braak 1986) fit
an ordination to biological data such that the ordination axes are functions of envi-
ronmental variables, the classification technique employed here uses biological data
to divide sites into groups such that this grouping is also defined in terms of decision
rules based on mapped environmental variables.

The analysis begins by considering the complete set of survey sites and searching
for a binary environmental rule that splits the sites into two groups, such that the
biological difference between these groups is maximised relative to the biological
variation within the groups. Each binary environmental split is defined in terms of a
cutpoint, such as ‘mean annual rainfall = 850 mm’ – which would divide the sites
into two groups, those with rainfall <850 mm and those with rainfall greater than or
equal to 850 mm. The biological difference between the two groups formed by a split
is evaluated by first estimating the compositional dissimilarity (in the occurrence of
species) between all pairs of sites involved – e.g. using the Bray–Curtis index. These
dissimilarities are then used to calculate the statistic:

D = dB − dW

where dB is the average dissimilarity between pairs of sites on opposite sides of
the environmental split (i.e. one site in group 1 and the other in group 2) and dW

is the average dissimilarity between pairs of sites on the same side of the split (i.e.
both sites in group 1 or both sites in group 2). The statistical significance of D is
estimated using a Monte Carlo randomisation procedure (Manly 1991), in which the
observed value is compared to a distribution of D values obtained by randomly per-
muting the assignment of sites to the two groups. This approach to significance testing
closely resembles the ANOSIM technique described by Clarke (1993), and the earlier
multi-response permutation procedure described by Mielke et al. (1976).

In the simplest form of the significance test, the null and alternative hypotheses
(H0 and H1) are:

H0: D = 0
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H1: D > 0

In our application we have generalised this test to allow evaluation of a wider range
of hypotheses of the form:

H0: D ≤ Dt

H1: D > Dt

where Dt is a specified threshold with which to compare the observed value of D.
Assigning Dt a value greater than 0 helps to alleviate the problem that sites may
otherwise be split into groups exhibiting a difference significantly greater than 0 yet
this difference is inconsequentially small in biological terms.

If the best available split is statistically significant the sites are partitioned into two
groups. This splitting procedure is then applied recursively to the resulting groups.
Each group of sites formed by a split is itself evaluated as a candidate for further
splitting. The process stops when none of the best available splits for the resulting
groups is statistically significant. The technique generates a hierarchical partitioning
of sites into groups (communities), in which each division in the hierarchy is de-
fined in terms of an environmental decision rule (see Figures 6 and 7). The strategy
can therefore be viewed as combining elements of polythetic divisive classification

Figure 6. A diagrammatic illustration of a canonical classification approach to community-level modelling
that integrates community classification and spatial modelling within a single analysis.
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(Lance And Williams 1975; Hill 1979) with elements of decision-tree modelling
(Brieman et al. 1984; Michaelsen et al. 1987; Moore et al. 1991). Where appropri-
ate, sites may be initially stratified according to some existing classification for a
region – e.g. classes from an existing vegetation map, or photo-pattern classes from
a preliminary interpretation of aerial photography or satellite imagery. The recursive
partitioning process can then be applied separately to the sites within each of these
classes (see Figure 6).

As a final step, groups of sites generated by the recursive partitioning can them-
selves be subjected to numerical cluster analysis – e.g. using a hierarchical agglo-
merative procedure such as UPGMA, with each initial group treated as an object
in the classification (see Figure 6). This provides additional information on the bi-
ological relationships (i.e. levels of dissimilarity) between groups generated by the
initial partitioning. It also provides a basis for identifying any groups, generated in
different parts of the initial partitioning, that appear to be biologically similar and
may therefore be candidates for amalgamation into a single community. Decisions
about whether or not to amalgamate such groups can be based on significance testing
similar to that employed in the initial partitioning.

A major advantage of the canonical classification approach described above is
that, because rules defining the environmental distribution of each community are
built into the classification, these distributions can be readily extrapolated within a
GIS without requiring any additional spatial modelling (we have implemented the
approach as an ArcView software extension). Because the approach considers bio-
logical and environmental data simultaneously within a single integrated analysis,
emphasis is placed on ensuring that derived communities are meaningful not only
in terms of biological variation but can also be defined in terms of environmental
variation, and thereby mapped. In this way the technique effectively filters out bio-
logical variation that cannot be accounted for in terms of the available environmen-
tal variables, and therefore cannot be mapped. Some of this unexplained variation
may relate to fine-scaled environmental variation not captured by the available en-
vironmental GIS layers while some may be simply noise, reflecting sampling error
associated with small survey plots, short observation periods or variability between
observers.

During the Comprehensive Regional Assessment in northeast NSW, this canonical
classification approach was used to subdivide broad forest types (mapped from aerial
photography) into finer-scaled floristic communities, employing full vascular plant
data recorded at plots scattered throughout each mapped type, in conjunction with
abiotic environmental variables (NSW NPWS 1999b). Latitude and longitude were
also included as predictor variables in the analysis, thereby allowing geographical
splitting of communities to account for biogeographical patterns (e.g. dispersal bar-
riers, range limits) not explainable in terms of environmental variables alone. In
some cases, communities generated within different forest types were subsequent-
ly amalgamated if they did not exhibit a significant difference in terms of the D
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statistic. The communities derived through this process were employed as primary
coarse-filter surrogates in all land-use planning and decision-making arising out of the
Comprehensive Regional Assessment. The performance of these derived communi-
ties as biodiversity surrogates was shown to be significantly better than that of the orig-
inal forest types, based on results of an extended application of the surrogate evaluation
study described earlier in this paper (NSW NPWS 1999a). More recently, the approach
has also been applied in the Nandewar Bioregion (for a locational map see Figure 1 in
Ferrier et al. 2002) to divide this entire region into vegetation communities, using only
survey data for canopy trees and remotely mapped abiotic variables – no existing vege-
tation mapping was available in this case (Ferrier et al. 2000b; see also Figure 7).

Modelling compositional dissimilarity – an alternative strategy for mapping
spatial pattern in biodiversity

All of the approaches we have discussed to this point have one thing in common –
they require reasonably large quantities of survey data for the entities being mod-
elled, whether these be species, communities or assemblages. These approaches are
therefore applicable only to regions with extensive survey datasets. Yet many of the
world’s regions identified as being of high priority for conservation action (Olson
and Dinerstein 1998; Myers et al. 2000) are relatively data-poor – particularly those
in the tropics. Available data in these regions may provide only a very sparse and
biased sample of a region’s biodiversity – in terms of both spatial and taxonomic
coverage.

Even in northeast NSW, probably one of the most thoroughly surveyed regions in
the world, modelling of biological distributions becomes problematic once we move
beyond vertebrates and vascular plants and attempt to consider the other 99% of
biodiversity. This is demonstrated by the relatively poor performance of traditional
modelling approaches when evaluated using ground-dwelling arthropod data for this
region (Figure 4, and Ferrier et al. 2002). A recent study by Ferrier et al. (1999a)
suggests that this poor performance might result from ground-dwelling arthropods
exhibiting stronger patterns of species turnover or replacement than vertebrates and
vascular plants, particularly between historically isolated areas of the same environ-
ment or habitat type. Because the density of survey sites is sparse relative to the
spatial grain of species turnover, modelled species are probably being predicted to
occur in areas where they are, in reality, replaced by other (as yet unsurveyed, or even
unknown) species. In this situation it also makes little sense to attempt to classify and
model communities, given that the communities detected by surveys may represent
only a fraction of all communities occurring within the region.

Traditional approaches to modelling spatial pattern in biodiversity are likely to
be challenged in coming years by two current shifts in global conservation focus
(Ferrier 2002). One is the increasing emphasis being placed on achieving conserva-
tion outcomes in highly diverse, yet relatively data-poor, regions such as many of
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those in the tropics. The other is a broadening of the taxonomic focus of conservation
effort beyond flagship vertebrate species, and vascular plant communities, to better
accommodate all the other groups (e.g. invertebrates) that comprise the greater bulk
of biodiversity. Addressing these challenges through modelling of individual entities
of biodiversity (e.g. species, communities) alone would be a daunting task. There are
simply too many entities and too little locational data for each entity.

A possible alternative in such situations is to shift the focus of modelling from
individual entities to collective properties (sensu Austin 1999) of biodiversity. Mo-
delling of species richness is probably the best known manifestation of this approach,
exemplified by a growing literature describing regional-scaled regression models re-
lating field-surveyed species richness to remotely mapped environmental variables
(e.g. Heikkinen and Neuvonen 1997; Leathwick et al. 1998; Lwanga et al. 1998;
Wohlgemuth 1998). Regional patterns of species richness extrapolated from such
modelling may however be of limited value in regional conservation planning. Con-
serving only areas of highest species richness will not necessarily maximise the total
number of species conserved in a region, as these areas will probably fail to include
species that occur only in areas of lower richness. To maximise the total number
of species, and therefore diversity, represented in a set of conservation areas we re-
quire additional information on the complementarity or compositional dissimilarity of
these areas – i.e. how dissimilar two areas are in terms of the species they contain
(Pressey et al. 1993).

Compositional dissimilarity can be viewed as another collective property of bio-
diversity, alongside species richness. In terms of Whittaker’s (1972, 1977) original
conceptual framework for partitioning species diversity into components, local spe-
cies richness equates to the α diversity component of inventory diversity, while com-
positional dissimilarity is an amalgam of the β and γ (sensu Coddy 1993) diversity
components of differentiation diversity. β diversity is the difference in composition
of species between different habitats or environments. γ diversity is the difference
in composition of species between geographically isolated occurrences of the same
habitat or environment.

We have recently developed a new approach to modelling the level of compositional
dissimilarity between pairs of survey sites as a function of the environmental and geo-
graphical separation of these sites. The basic analytical strategy is derived from that of
permutational matrix regression (Manly 1986; Smouse et al. 1986; Legendre et al. 1994),
itself an extension of the matrix correlation approach widely used to test correlations be-
tween distance matrices (Burgman 1987; Legendre 1993). In its original form, matrix
regression simply employs multiple linear regression to predict the dissimilarities
(or distances) in one matrix (the response) as a function of the distances in one or more
independent (explanatory) matrices. In this particular application the response matrix
contains compositional dissimilarities between all pairs of survey sites calculated, for
example, using the Bray–Curtis measure (Poulin and Morand 1999; Ferrier et al.
1999a). A sites-by-sites matrix is also prepared for each of the explanatory variables.
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For example, if one of these variables is mean annual rainfall, then a matrix is prepared
in which each value is the difference in rainfall between a given pair of sites. Linear ma-
trix regression produces models of the form:

dij = a + b1(|x1i − x1j |) + b2(|x2i − x2j |) + · · ·
where dij is the compositional dissimilarity between sites i and j; a, the intercept
(the expected compositional dissimilarity when two sites have the same values for
all explanatory variables); x1i , the value for the first explanatory variable (e.g. rain-
fall) at site i; b1 the regression coefficient for the difference in the first explanatory
variable.

Significance testing in matrix regression is performed by Monte Carlo permu-
tation to overcome the problem of lack of independence between site pairs. This
approach has been used in northeast NSW to compare regional patterns of compo-
sitional dissimilarity in ground-dwelling arthropods with patterns exhibited by verte-
brates and vascular plants (Ferrier et al. 1999a).

Matrix regression, in the form described above, assumes that all relationships be-
tween the biological and environmental variables are linear. This assumption is un-
likely to be satisfied in many real-world datasets. We have therefore recently extended
the technique of matrix regression to address two common types of non-linearity
encountered in ecological data. We refer to the resulting approach as ‘generalised
dissimilarity modelling’ (GDM) (Ferrier et al. 1999b; Ferrier 2002; Ferrier and Man-
ion in preparation; see also Figure 8). The first type of non-linearity addressed by
GDM relates to the well-established fact that the relationship between ecological sep-
aration of sites and observed compositional dissimilarity is not linear, but instead
curvilinear (Gauch 1973; Faith et al. 1987). Most measures of compositional dis-
similarity, including the Bray–Curtis measure, are constrained between 0 and 1. As
ecological separation increases, and sites share progressively fewer species, the ob-
served dissimilarity will approach, but cannot exceed, a value of 1. The relationship
between ecological separation and compositional dissimilarity is therefore asymp-
totic. By assuming a linear relationship between ecological separation and compo-
sitional dissimilarity the original matrix regression approach is unlikely to perform
well when applied to datasets exhibiting a high level of β and/or γ diversity, and
therefore containing compositional dissimilarities close to, or equal to, 1.

With GDM this problem is addressed by fitting models using generalised linear
modelling instead of ordinary linear regression. This allows the curvilinear relation-
ship between ecological separation and compositional dissimilarity to be accom-
modated through specification of appropriate link and variance functions. The link
function currently being trialed for use with the Bray–Curtis dissimilarity measure is:

η = − ln(1 − µ)

which is designed to approximate the asymptotic behaviour of compositional dis-
similarity with increasing ecological separation. Other link functions may be more
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Figure 8. A diagrammatic illustration of the GDM approach to modelling compositional dissimilarity
(based on Ferrier 2002).

appropriate for particular datasets and dissimilarity measures, and therefore worthy
of further investigation. The variance function currently being trialed for use with the
Bray–Curtis measure (applied to presence/absence data) is:

µ(1 − µ)

The second type of non-linearity addressed by GDM relates to the rate of compo-
sitional change, or ‘turnover’, along environmental gradients. In ordinary matrix re-
gression it is assumed that this rate remains constant across the entire range of each
environmental variable. However, violations of this assumption may be common in
real-world datasets (Whittaker 1977; Wilson and Mohler 1983; McNaughton 1994;
Oksanen and Tonteri 1995; Simmons and Cowling 1996). Environmental gradients
are measured on essentially arbitrary scales that may not concord well with real pat-
terns of compositional turnover (e.g. log-transformed mean annual rainfall may pro-
vide better concordance than untransformed rainfall).

With GDM, variation in the rate of compositional turnover along gradients is accom-
modated through automated non-linear transformation of environmental variables. This
is achieved using monotonic I-splines, in a similar fashion to that described by Wins-
berg and De Soete (1997). The splines are used to fit a transforming function f to each
environmental variable that maximises the reduction in deviance achieved by including
|f (xi) − f (xi)| as a predictor in the model. By applying the link function described
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above, in conjunction with monotonic transformation of environmental variables, mod-
els derived using GDM take the following form (see also Figure 8):

− ln(1 − dij ) = a + ∣
∣f1(x1i ) − f1(x1j )

∣
∣ + ∣

∣f2(x2i ) − f2(x2j )
∣
∣ + · · ·

Matrix regression approaches, including GDM, provide a natural means of incor-
porating geographical separation as an additional predictor in modelling of composi-
tional dissimilarity, thereby providing the potential to integrate modelling of both the
β and γ components of differentiation diversity. An example of functions, fitted using
GDM, relating compositional dissimilarity of sites surveyed in northeast NSW for
ground-dwelling spiders to geographical separation and location on environmental
gradients is provided in Figure 9. The potential applicability of GDM to modelling of
γ diversity is discussed further by Ferrier (2002), including the possibility of replac-
ing simple Euclidean distance with more sophisticated measures of biogeographical
isolation in such analyses.

Figure 9. An example of functions fitted by applying GDM to data for ground-dwelling spiders in
northeast NSW.
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We are currently investigating two other possible refinements to the GDM
approach that should further improve the technique’s applicability to real-world con-
servation planning. The first of these involves extending the approach to better ac-
commodate biological data collected by ad hoc surveys (i.e. presence-only data rather
than presence/absence data). The second refinement involves adding a capability to
model interactions between environmental predictors – e.g. the rate of compositional
turnover relating to soil fertility might vary with mean annual rainfall.

In some respects GDM can be viewed as a form of constrained ordination and
therefore bears a resemblance to other constrained ordination techniques such as ca-
nonical correspondence analysis (CCA) and redundancy analysis (RDA) (ter Braak
1986; Jongman et al. 1995). Advantages of GDM relative to CCA for regional con-
servation planning include: (1) GDM can potentially accommodate any measure of
compositional (or even phylogenetic or genetic) dissimilarity, whereas CCA is based
on a single χ2 measure. (2) GDM can accommodate non-linear relationships be-
tween environmental distance and biological dissimilarity, whereas CCA assumes a
linear relationship. (3) GDM can accommodate variation in the rate of compositional
turnover along an environmental gradient, whereas CCA assumes a constant rate.
(4) GDM provides a more natural and flexible means of incorporating geographical
separation or isolation (γ diversity) into modelling of compositional dissimilarity.

Ferrier (2002) describes two ways in which modelling of compositional dissim-
ilarity might be employed in regional conservation planning. In the first approach
predictions from such models are used to constrain the derivation of environmental
classifications. Numerical classification of all grid cells within a region into environ-
mental classes or ‘domains’ is an increasingly popular technique for deriving coarse-
filter surrogates for biodiversity in data-poor regions (e.g. Mackey et al 1989; Bernert
et al. 1997; Fairbanks and Benn 2000; Nix et al. 2000). By basing such classification
on predicted compositional dissimilarities between grid cells (e.g. from a model fitted
using GDM), in place of dissimilarities derived from environmental variables alone, a
surrogate can be derived that is likely to better reflect real patterns of β and γ diversi-
ty. Classes produced in this manner can then be employed in conservation planning in
exactly the same way as any other land classification. Alternatively predictions from
modelling of compositional dissimilarity could be used more directly to prioritise and
select conservation areas, by employing techniques such as the environmental-diver-
sity (ED) approach pioneered by Faith and Walker (1996a,b) in which conservation
areas are assessed in relation to continuous environmental data rather than discrete
land classifications.

Ferrier (2002) also describes how GDM can be further combined with new sur-
vey-design techniques to provide an integrated strategy for cost-effectively refining
information on spatial pattern in biodiversity within data-poor regions. In this strategy
predictions from an initial model, based on existing biological data, are used to strate-
gically locate additional survey sites to maximise improvement in the environmental
and geographical coverage of sampling. Data from these new sites are then used to
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refine the initial model, thereby providing an improved basis for selecting any further
sites. The process can be repeated iteratively, thereby allowing spatial information on
biodiversity to be refined progressively over time, subject to availability of resources
for survey work. This integrated approach is currently being trialed in a number of
regions in Australia, and in collaborative projects in Guyana and South Africa.

Conclusions

Statistical modelling of biological survey data in relation to remotely mapped environ-
mental variables provides a powerful means of making more effective use of sparse data
in regional conservation planning. To date, most attention in this field has been directed
towards modelling distributions of individual species. While species-level modelling
has played, and should continue to play, an important role in conservation planning we
feel that even greater benefit could be gained if this particular approach were more wide-
ly supplemented by community-level modelling approaches such as those described in
this paper. Species-level modelling makes good sense when applied to selected species
of particular conservation concern – e.g. threatened, focal or flagship species. Howev-
er, the approach may not be an effective or efficient way of modelling spatial pattern in
biodiversity as a whole, particularly when dealing with highly diverse taxa in poorly
surveyed regions. There will simply be too many species, and too little data per species,
for these to be modelled effectively on a species-by-species basis.

One of the main challenges of community-level modelling is deciding which of the
many possible strategies is most appropriate for a given situation. Community-level
modelling offers a far richer set of analytical strategies than does species-level model-
ling. With species-level modelling, the only real choice is between statistical model-fit-
ting techniques (e.g. GLM, GAM, decision-trees or neural networks). However, with
community-level modelling the choice of a particular statistical technique is often a rel-
atively low-level concern, overshadowed by higher-level decisions about the overall an-
alytical strategy – e.g. whether to adopt a modelling-then-classification or classification-
then-modelling approach, or whether to derive and model site-groups or species-groups.
There is little point in attempting to identify a single ‘best practice’ strategy for use in
all situations. The approaches described in this paper each have particular strengths and
weaknesses that need to be considered when evaluating their applicability to a given
dataset and analytical objective. An approach that performs well in one situation – i.e. to
achieve a particular objective using a particular dataset – may not perform well
when applied to a different objective and/or dataset.

The choice of which community-modelling strategy to employ in any given situa-
tion needs to be informed by an awareness of the full range of alternatives. This paper
has demonstrated that the set of possible approaches is potentially much richer than has
been previously recognised. We hope this may engender increased interest in the appli-
cation of new or neglected approaches, thereby adding further value to available biolog-
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ical and environmental data and providing an improved basis for regional conservation
planning. Four potential shifts in methodology that we feel are particularly worthy of
further attention are: (1) more widespread use of species-group (assemblage) modelling
as an alternative to site-group (community) modelling; (2) closer integration of commu-
nity classification and spatial modelling through employment of canonical classification
techniques; (3) increased incorporation of information from aerial photography and sat-
ellite imagery (including existing vegetation mapping and related land classifications)
into community-level modelling, alongside abiotic environmental variables; and (4)
increased use of modelling of collective properties of biodiversity (particularly compo-
sitional dissimilarity) in data-poor regions, as an alternative to modelling individual
biodiversity entities (species, communities or assemblages).
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