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ABSTRACT

 

Generalized dissimilarity modelling (GDM) is a statistical technique for analysing
and predicting spatial patterns of turnover in community composition (beta diversity)
across large regions. The approach is an extension of matrix regression, designed
specifically to accommodate two types of nonlinearity commonly encountered in
large-scaled ecological data sets: (1) the curvilinear relationship between increasing
ecological distance, and observed compositional dissimilarity, between sites; and
(2) the variation in the rate of compositional turnover at different positions along
environmental gradients. GDM can be further adapted to accommodate special
types of biological and environmental data including, for example, information on
phylogenetic relationships between species and information on barriers to dispersal
between geographical locations. The approach can be applied to a wide range of
assessment activities including visualization of spatial patterns in community
composition, constrained environmental classification, distributional modelling
of species or community types, survey gap analysis, conservation assessment, and
climate-change impact assessment.
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INTRODUCTION

 

Conservation assessment and planning require information on

the spatial distribution of biodiversity, often across very large

regions (Margules & Pressey, 2000). Direct field sampling of such

regions is typically sparse, with biological survey or collection

sites separated by extensive areas of unsurveyed land. Planning

therefore often employs remotely mapped surrogates for bio-

diversity such as habitat (or vegetation) types derived from aerial

photography and satellite imagery, or abiotic environmental

classes derived from climate, terrain, and soil attributes. These

surrogates provide better geographical coverage, but the level of

congruence between mapped habitat or environmental classes

and actual biological distributions may be weak or, in many

cases, simply unknown (Ferrier, 2002).

The surrogacy value of remotely generated environmental

data can be enhanced by linking this information to available

biological data through statistical analysis or modelling. The

most popular approach to such integration has been to model

the presence (or abundance) of individual species as a function of

environmental variables, thereby allowing species distributions

to be extrapolated across an entire region of interest (Guisan &

Zimmermann, 2000). Two approaches to modelling spatial

pattern in biodiversity at the community level have also been applied

reasonably widely in conservation assessment (Ferrier & Guisan,

2006): (1) ‘predict first, assemble later’, in which the modelled

distributions of a set of individual species are subjected to some

form of numerical classification to derive higher-level entities

such as community types, and (2) ‘assemble first, predict later’, in

which community-level entities are first derived through numerical

classification of the raw biological survey data, and these entities

are then modelled as a function of environmental predictors.

These approaches, based on modelling individual species, or

classified community types, are appropriate if the density of

survey sites within a region is high relative to the grain of spatial

turnover in composition within the biological group of interest.

In this situation the average number of records per species or

community type is likely to be sufficiently large to allow effective

modelling of each entity. These approaches may, however, be less

effective if biological sampling is sparse relative to compositional

turnover, in which case many of the species or community types

occurring within a region may either fail to be sampled at all, or
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will be represented by too few records for modelling. This problem

is particularly acute when dealing with highly diverse biological

groups (e.g. plants, invertebrates) in regions exhibiting high rates

of spatial turnover in biological composition (e.g. tropical forests).

An alternative strategy in such situations is to shift the focus of

modelling from discrete entities (species or community types) to

collective, or emergent, properties of biodiversity (Ferrier, 2002).

Modelling of spatial variation in local species richness (alpha

diversity) is probably the best-known manifestation of this strategy.

However, modelling of richness is of limited value to conservation

assessment if, as is commonly the case, the collective diversity of

a region is determined more by differences in biological com-

position between locations (i.e. beta diversity) than by site-level

diversity. To provide a better basis for conservation assessment in

such situations, modelling of richness needs to be supplemented

by modelling of beta diversity.

Legendre 

 

et al

 

. (2005) have recently reviewed two major

approaches to analysing and modelling patterns in beta diversity:

(1) the ‘raw-data’ approach, in which various environmental and

geographical components of beta diversity are partitioned

through some form of canonical analysis (e.g. redundancy ana-

lysis or canonical correspondence analysis); and (2) the ‘distance’

approach, in which dissimilarities in biological composition

between pairs of survey sites are related to environmental or

geographical distances using matrix correlation or regression

techniques. The appropriateness of these two approaches depends

on the purpose of any given study. Legendre 

 

et al

 

. (2005) present a

case for using the raw-data approach in testing hypotheses regard-

ing the origins of beta diversity and in quantifying the relative

importance of different components of this diversity. However,

the distance approach is generally more appropriate for analys-

ing, and potentially predicting, variation in beta diversity among

groups of sites (Tuomisto & Ruokolainen, 2006), which is the

application of interest here.

In this paper, we examine a particular variant of the distance

approach — generalized dissimilarity modelling

 

1

 

 (GDM; Ferrier,

2002; Ferrier 

 

et al

 

., 2002) — which has been applied increasingly

to biodiversity assessment activities over recent years. We start by

describing how GDM is formulated as a nonlinear extension of

the more traditional distance approach of matrix regression, and

how this new technique can be further adapted to accommodate

various types of biological and environmental data. We then out-

line the broad range of assessment activities to which GDM has

been, or could be, applied and illustrate these with examples

from various parts of the world. We conclude by suggesting

directions for further work to refine and extend this approach.

 

DEVELOPMENT OF THE BASIC TECHNIQUE

Linear matrix regression

 

Matrix regression is an extension of the popular Mantel

approach (Legendre, 1993) to evaluating the correlation, or cor-

respondence, between two distance matrices. By reformulating

this approach as a regression, a single response matrix can be

modelled as a function of distance matrices for any number of

explanatory variables (Manly, 1986; Smouse 

 

et al

 

., 1986; Legendre

 

et al

 

., 1994). In the application of interest here, the response

matrix consists of compositional dissimilarities between all pos-

sible pairs of biological survey sites within a given region (Poulin

& Morand, 1999; Ferrier 

 

et al

 

., 1999). Compositional dissimilarity

can be measured using any of the indices proposed in the extensive

literature on this subject (Legendre & Legendre, 1998), based on

either the presence or the abundance of species at the two sites of

interest. In this paper we employ, by way of example, the presence–

absence version of the Bray–Curtis dissimilarity index:

(1)

where 

 

A

 

 is the number of species common to both sites 

 

i

 

 and 

 

j

 

;

 

B

 

 is the number of species present only at site 

 

i

 

; and 

 

C

 

 is the

number of species present only at site 

 

j

 

.

Assuming that 

 

n

 

 environmental variables (

 

x

 

1

 

 to 

 

x

 

n

 

) have also been

estimated at the set of biological survey sites, matrix regression

can be formulated most simply as a multiple linear regression:

(2)

The environmental variables employed in this type of analysis

may include not only mapped climate, terrain, and soil surfaces,

but also raw spectral bands, or indices, derived from satellite-borne

or air-borne remote sensing. Where necessary, the geographical

separation of sites can also be incorporated as a predictor by

replacing 

 

x

 

ki

 

 – 

 

x

 

kj

 

 with a measure of spatial distance. Significance

testing in matrix regression is normally performed using a random

permutation procedure to overcome the problem of lack of in-

dependence between site pairs (Manly, 1986; Legendre 

 

et al

 

., 1994).

 

Limitations of the linear approach

 

The effectiveness of the above approach is potentially hindered

by two different types of nonlinearity commonly encountered in

ecological data. The first source of nonlinearity relates to the fact

that most measures of compositional dissimilarity, including

the Bray–Curtis index, are constrained between 0 and 1. As the

ecological separation (environmental and/or spatial) of two sites

increases, these sites share progressively fewer species until, once

no species are shared, the dissimilarity measure takes on an

asymptotic value of 1, regardless of any further increase in eco-

logical separation (Fig. 1). The relationship between ecological

separation and observed compositional dissimilarity is therefore

curvilinear (Gauch, 1973; Faith 

 

et al

 

., 1987). This relationship

may be treated as approximately linear within a study area

encompassing relatively low levels of compositional turnover

(i.e. for which pairs of sites generally share at least some species).

However, the approximation is less tenable for data sets

exhibiting higher levels of beta diversity, in which case a sizeable

proportion of sites may share no species with one another

(Fig. 1).

 

1

 

Software for fitting generalized dissimilarity models can be downloaded 
from: http://www.biomaps.net.au/gdm/
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The second type of nonlinearity of interest here relates to the

rate of compositional turnover along environmental gradients.

Linear matrix regression assumes that this rate remains constant

(or stationary) across the entire range of each environmental

variable. Yet marked violations of this assumption are commonly

encountered in real-world data sets (Whittaker, 1977; Wilson &

Mohler, 1983; McNaughton, 1994; Oksanen & Tonteri, 1995;

Simmons & Cowling, 1996). This is partly because environ-

mental variables are measured on essentially arbitrary scales —

e.g. log-transformed mean annual rainfall may provide better

concordance with observed patterns in compositional turnover

than untransformed rainfall. The example presented in Fig. 1

illustrates how variation in the rate of turnover along an environ-

mental gradient can limit the ability of matrix regression to

detect and model such a relationship. Site pairs A-B, B-C, C-D,

D-E, and E-F all exhibit the same level of separation when meas-

ured against the depicted environmental gradient. However,

because the rate of compositional turnover increases as one

moves from left to right across this gradient, these equidistant

site-pairs exhibit considerable variation in compositional dis-

similarity (reflected in the vertical spread of points for environ-

mental distance 

 

=

 

 10 in Fig. 1b). As for the first type of nonlinearity,

this second problem is likely to be more acute for extensive study

areas spanning long environmental gradients.

 

Reformulating matrix regression as a generalized 
linear model

 

GDM is an extension of matrix regression designed specifically

to accommodate both types of nonlinearity described above

(Ferrier, 2002; Ferrier 

 

et al

 

., 2002). The curvilinear relationship

between ecological separation and compositional dissimilarity is

addressed by reformulating the approach as a generalized linear

model (McCullagh & Nelder, 1989). In keeping with other gener-

alized linear models (e.g. logistic regression), this particular

model is specified in terms of two functions: (1) a link function

defining the relationship between the predicted response 

 

µ

 

 (in

this case compositional dissimilarity between a pair of sites) and

the so-called ‘linear predictor’ 

 

η

 

 (in this case a scaled combination

of intersite distances based on any number of environmental or

geographical variables, as in the right-hand side of Equation 2);

and (2) a variance function defining how the variance of 

 

µ

 

depends on the predicted mean.

While different link functions may be appropriate for different

measures of compositional dissimilarity (and therefore warrant

further investigation), we have found the following link (presented

here in inverse form) to have general utility in applications

employing the Bray–Curtis index:

(3)

Given that the Bray–Curtis index is essentially a proportion

(i.e. the number of species present at one site but not the other,

expressed as a proportion of the sum of the total number of spe-

cies, 

 

s

 

, at each site), we employ the binomial variance function:

(4)

Other possible variance functions, including that based on the

beta distribution (Ferrari & Cribari-Neto, 2004), deserve further

consideration.

Also worthy of further consideration is the possibility of

applying GDM to dissimilarities that have already been adjusted

to compensate for the curvilinear relationship with ecological

distance — e.g. by applying non-metric or hybrid multidimen-

sional scaling (Faith 

 

et al

 

., 1987) or by estimating extended dis-

similarities (De’ath, 1999). In these situations the link function

employed in GDM might be more appropriately defined as linear

rather than curvilinear. However, more work is needed to deter-

mine whether such preprocessing of dissimilarities (through

analysis of the biological data alone, without reference to the

environmental data) confers any particular advantage over

accommodating the curvilinear relationship, with ecological

distance more directly within GDM (through combined analysis

of the biological and environmental data).

Figure 1 Hypothetical example illustrating the problems discussed 
in the text relating to the application of linear matrix regression to 
large-scaled ecological data sets. (a) Species’ distributions 
(horizontal lines) in relation to a hypothetical environmental 
gradient, with six survey sites positioned along this gradient. 
(b) Plot of compositional dissimilarity vs. environmental distance 
for all possible pairwise combinations of the six survey sites.
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Addressing non-stationarity in rates of compositional 
turnover

 

Extending this generalized linear version of matrix regression to

address the second source of nonlinearity — that relating to varia-

tion in the rate of compositional turnover along environmental

gradients — presents a more difficult challenge. Based on first

impressions one may be tempted to approach this by simply

converting the generalized linear model described above to a

generalized additive model (Hastie & Tibshirani, 1990). This

would involve replacing the linear terms comprising 

 

η

 

 with non-

linear functions fitted using, for example, scatterplot smoothing.

However, because such an approach would transform pairwise

distances derived from an environmental variable, not the vari-

able itself, it would contribute little to solving the problem of

interest here. This should be apparent from the example depicted

in Fig. 1, in which site-pairs A-B, B-C, C-D, D-E, and E-F would

all be assigned the same value in a matrix of pairwise environ-

mental distances, and would therefore remain equivalent no

matter how these distances were transformed.

GDM approaches this problem by fitting nonlinear functions

directly to the environmental variables themselves, rather than to

the pairwise distances derived from these variables. The general

form of 

 

η

 

 in this approach is therefore:

(5)

The challenge now becomes one of fitting functions, 

 

f

 

p

 

(

 

x

 

p

 

), to

the environmental variables such that a model based on distances

measured from these functions, 

 

f

 

p

 

(

 

x

 

pi

 

) – 

 

f

 

p

 

(

 

x

 

pj

 

), provides the best-

possible fit between predicted and observed compositional dis-

similarity. In GDM we make the reasonable assumption that

compositional dissimilarity can only increase, not decrease, with

increasing separation of sites along an environmental gradient.

The functions, 

 

f

 

p

 

(

 

x

 

p

 

), are therefore constrained to be monotonic.

To ensure both monotonicity and flexibility of shape, each of

these functions is fitted as a linear combination of I-spline basis

functions (Ramsay, 1988):

(6)

where 

 

I

 

pk

 

 is the 

 

k

 

th I-spline for variable 

 

x

 

p

 

 

 

and 

 

a

 

pk

 

 is the fitted

coefficient for 

 

I

 

pk

 

, subject to the constraint 

 

a

 

pk

 

 

 

≥

 

 0.

The I-spline basis functions are analogous to terms in a poly-

nomial regression. However, because I-splines are themselves

monotonic, any function derived by combining I-splines for a

given environmental variable will also be monotonic, provided

that all fitted coefficients are non-negative. Flexibility, or potential

complexity, in the shape of the derived function for each variable

is determined by the number of I-splines employed (

 

m

 

p

 

 in the

above equation). A detailed description of I-splines, and their

calculation, is beyond the scope of this paper. Further informa-

tion is available in Ramsay (1988). Our use of I-splines in GDM

was inspired largely by their prior application to a form of con-

strained multidimensional scaling by Winsberg & De Soete

(1997).

Combining Equations 5 and 6 we can now reformulate 

 

η

 

 as:

(7)

or more simply:

(8)

This formulation is particularly convenient because it

opens the way to fitting the required coefficients, 

 

a

 

pk

 

, using the

maximum-likelihood estimation approach commonly employed

in other forms of generalized linear modelling (McCullagh &

Nelder, 1989).

 

Model fitting

 

Fitting a GDM model to biological and environmental data from

a set of survey sites involves the following steps:

 

1

 

Calculate compositional dissimilarity, 

 

d

 

, between all possible

pairs of survey sites (e.g. using the Bray–Curtis index).

 

2

 

For each environmental variable, 

 

x

 

p

 

, derive a set of 

 

m

 

p

 

 I-spline

basis functions and calculate the value of each survey site against

each of these functions, 

 

I

 

pk

 

(

 

x

 

p

 

).

 

3

 

For each of the I-spline basis functions generated in Step 2,

calculate the absolute difference in value between sites 

 

i

 

 and 

 

j

 

,

|

 

I

 

pk

 

(

 

x

 

pi

 

) –

 

 I

 

pk

 

(

 

x

 

pj

 

)|, for all possible pairs of sites, and save these dis-

tances as 

 

∆

 

I

 

pk

 

.

 

4

 

If geographical distance between sites is required as an explan-

atory variable, then derive a set of I-spline basis functions

directly from this distance. In other words, if 

 

g

 

ij

 

 is the geographical

distance between sites 

 

i

 

 and 

 

j

 

, then the relevant 

 

∆

 

I

 

pk

 

 is now calculated

simply as 

 

I

 

pk

 

(

 

g

 

ij

 

). The same approach can be applied to other ‘dis-

tance variables’ enabling, for example, compositional dissimilarity

in one biological group to be used as an explanatory variable for

dissimilarity in another group (e.g. Steinitz 

 

et al

 

., 2005).

 

5

 

Use maximum likelihood estimation to fit coefficients, 

 

a

 

pk

 

, to

the I-spline basis functions. This can be achieved using the itera-

tively re-weighted least squares (IRLS) algorithm (McCullagh &

Nelder, 1989), with compositional dissimilarity as the response

and the series of derived 

 

∆

 

I

 

pk

 

 variables as predictors, and with

link and variance functions as defined in Equations 3 and 4. The

only non-standard requirement of this step is that all fitted co-

efficients must be non-negative to ensure monotonicity in 

 

f

 

p

 

(

 

x

 

p

 

).

This is readily achieved by replacing the least-squares regression

normally employed within the IRLS algorithm with a non-negative

least-squares regression.

 

Model selection and significance testing

 

The predictors included in a model, and the number of I-spline

basis functions employed for each predictor (controlling the

allowable complexity of the nonlinear transformation of that

predictor), can be determined using various automated selection

strategies, including forward-selection, backward-elimination, and

stepwise procedures. As for linear matrix regression (Legendre

 

et al

 

., 1994), when these procedures are applied to GDM all

η α    ( )  ( )= + −
=

∑ f x f xp pi p pj
p

n

1

f x a I xp p pk
k

m

pk p

p
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∑
1

η α    ( )  ( )      = + − ≥
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k
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p
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significance testing must be performed using matrix permuta-

tion. The significance of adding or removing a predictor (or an

I-spline basis function for any given predictor) is evaluated by

first calculating the difference in deviance between two models

— i.e. one with, and the other without, the predictor (or I-spline

basis function) of interest. The deviance of each model is estimated

as for any other form of generalized linear model (McCullagh &

Nelder, 1989), employing the link and variance functions defined

in Equations 3 and 4. This observed difference in deviance is then

compared to a distribution of differences obtained by repeatedly

fitting the two models using a large number of random permu-

tations of the order of sites in the response (compositional dis-

similarity) matrix.

A simple example

Figure 2 presents an example of a GDM model (Faith & Ferrier,

2002) fitted to rainforest-tree data from 34 plots in Panama (this

data set is described by Condit et al., 2002). Several previous

studies have analysed this same data set using a linear matrix

regression (Duivenvoorden et al., 2002; Ruokolainen & Tuomisto,

2002; Chust et al., 2006). The model includes three predictors:

precipitation, elevation, and geographical distance (two other

environmental variables were considered in fitting the model,

but were removed by a backward-elimination procedure). The

nonlinear monotonic functions fitted for precipitation and

geographical distance are derived from three I-spline basis

Figure 2 Example of a GDM model (Faith & 
Ferrier, 2002) fitted to Panamanian rainforest-
tree data (this data set is described by Condit 
et al., 2002).
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functions, while that for elevation is derived from four I-splines.

These fitted functions convey two important types of information.

First, the maximum height reached by each function provides an

indication of the total amount of compositional turnover (beta

diversity) associated with the environmental gradient concerned,

holding all other variables constant. Second, the slope of each

function provides an indication of the rate of compositional

turnover, and how this rate varies along the gradient concerned.

The plot of observed compositional dissimilarity (dij) vs. the

linear predictor (η ij), indicates the fit between observed and pre-

dicted dissimilarity (the latter is represented by the curved line,

which is the inverse-link function of the model). We refer to the

linear-predictor axis of this plot as ‘predicted ecological distance’,

to conform with the terminology employed by Gauch (1973) and

Faith et al. (1987) in their descriptions of the curvilinear relation-

ship between ecological distance and observed compositional

dissimilarity.

EXTENSIONS

The basic GDM approach described above is very flexible, and

can be extended to incorporate many different types of biological

and environmental data. In this section we briefly outline some

of these possibilities.

Incorporating nominal-scaled predictors

The mathematical description of GDM presented above assumes

that environmental predictors are continuous variables or, at

least, that these variables consist of ordered categories (e.g.

classes of increasing soil fertility). However, some environmental

variables of potential importance in modelling beta diversity

may consist of disordered categories, including vegetation (or

habitat) types or geological classes. At least three different

approaches can be used to incorporate such variables into GDM:

(1) Assign each pair of sites a distance of zero if they occur in the

same class, or one if they occur in different classes, and then treat

this binary distance measure in the same manner as geographical

distance (see ‘Model fitting’ above). (2) Based on expert opinion,

rate each possible pair of classes in terms of the perceived ecolog-

ical difference between these classes (e.g. on a scale of 0–1), and

then use these ratings as a more refined measure of distance

between site pairs. (3) Use the ratings from the previous

approach to perform a principal coordinate analysis (metric

multidimensional scaling) of the classes, thereby generating a

series of principal coordinate axes that can then be treated as

continuous environmental variables in GDM.

Incorporating extended measures of geographical 
separation

Straight-line distance (or ‘map distance’) is just one of many

possible approaches to measure geographical separation of sites.

For example, if information on the relative impedance (or cost)

to biological dispersal across different parts of a landscape is

available as a spatial surface, then the separation of two sites can

be measured as some function of the impedance accumulated

along the least-cost path connecting these sites. In the example

depicted in Fig. 3 the least-cost path between each pair of sites

was derived by assuming that the impedance of any other grid-

cell in the study area is proportional to the difference in elevation

between that cell and the mean elevation of the two sites concerned.

Figure 3 Least-cost paths generated between all pairs of 10 insect 
survey sites in the Australian Wet Tropics. These sites are a subset 
of a much larger set of insect sites. The shading depicts elevation 
(higher elevation areas are lighter), which was the variable used 
to estimate impedance to movement (see text for details). 
(The insect survey sites were kindly provided by Geoff Monteith, 
Queensland Museum.)
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In other words, a GDM analysis employing this measure would

treat high-elevation sites as being more isolated geographically if

they are separated by low-elevation barriers, and vice versa. This

approach could be readily extended to incorporate more sophis-

ticated measures of biogeographical isolation based, for example,

on palaeoclimatic reconstruction.

Incorporating phylogenetic/taxonomic information

Measures of compositional dissimilarity employed in commu-

nity ecology rarely incorporate any information on phylogenetic

relationships between the species involved (Webb et al., 2002).

Yet such information may help to shed more light on patterns of

beta diversity, particularly if these patterns are being viewed from

an evolutionary, as opposed to strictly ecological, perspective. As

part of our work on GDM we have therefore developed a new

method for extending traditional measures of compositional

dissimilarity to incorporate information on phylogenetic

relationships.

Using the Bray–Curtis measure as an example, recall from

Equation 1 that this index is calculated as a function of A, the

number of species shared by two sites, and B and C, the numbers

of species occurring at one site but not the other. Now assume

that a phylogenetic tree is available for the group of species of

interest. By adopting principles of the phylogenetic diversity

(PD) approach of Faith (1992), we can factor phylogeny into the

Bray–Curtis measure by simply redefining A, B, and C in terms of

the total phylogenetic branch length shared by the two sites vs.

the remaining total branch length unique to one site or the other

(see Fig. 4). This same technique can be applied to any of the

extensive family of dissimilarity measures based on the quantities

A, B, and C (Koleff et al., 2003), e.g. the Jaccard index. In the

absence of an appropriate phylogeny, our approach can instead

be applied to a tree representing the hierarchical taxonomic

relationships between species (genus, family, order, etc.).

Incorporating presence-only biological data

To this point our description of GDM has assumed that the

biological data used to fit a model have been collected through

consistent application of a given survey technique at all sites. In

this situation, each species in the group of interest has been

recorded as either present or absent at each and every survey site

in the data set. However, much of the world’s data on biodiversity

is not in this form. Data derived from the extensive biological

collections of museums and herbaria contain extremely valuable

information on locations where species have been recorded as

present (i.e. collected) but offer virtually no information on the

Figure 4 Hypothetical phylogeny for species occurring at two sites, 
i and j. This phylogenetic information can be used to derive an 
extended version of the Bray–Curtis dissimilarity index by redefining 
the quantities A, B, and C (from Equation 1) in terms of 
phylogenetic branch length, where A is the total branch-ength 
shared by the two sites, B is the total branch length unique to site i, 
and C is the total branch length unique to site j.

Figure 5 Applications of generalized 
dissimilarity modelling.
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other locations that were searched unsuccessfully for these species

(Graham et al., 2004).

GDM has, in a few cases, been applied to such data sets by

using the combined set of locations from which one or more

species within the group of interest have been collected, as an

approximate indicator of locations searched for each species

within the group (Ferrier et al., 2004; Elith et al., 2006). In other

words, if a species has not been collected at one of these locations

then it is assumed to be absent for the purposes of the GDM

analysis. Differences in collection effort between locations are

then addressed to some extent by the weighting for number of

species recorded at each site in the GDM variance function

(Equation 4). This ensures that pairs of sites with few species

recorded carry less weight, and therefore have less influence,

in the fitting of a model than site-pairs with larger numbers

of species. These approaches to applying GDM to biological

collection (presence-only) data sets should, however, be

regarded as approximate only, and require further evaluation

and refinement.

APPLICATIONS

Once a GDM model has been fitted to available biological data

for a study area, this model can be used to predict the compositional

dissimilarity expected between any two locations, knowing only

the position of these locations in relation to each of the environ-

mental and geographical predictors employed in the model. If all

of these predictors are available as spatial surfaces within a geo-

graphical information system (GIS) then this opens the way to

extrapolating patterns of compositional turnover (beta diversity)

across an entire study area. Such extrapolation can, in turn, provide

the basis for a wide range of biodiversity assessment and planning

activities, some of which we outline below (see also Fig. 5).

Visualizing spatial pattern in community composition

By applying multidimensional scaling (metric or non-metric) to

predicted compositional dissimilarities between pairs of locations

(grid cells) within a region, these locations can then be mapped

against the resulting ordination axes. Assigning the first three

ordination axes to the red, green, and blue (RGB) bands of a

colour image provides an effective means of visualizing spatial

pattern in community composition (Fig. 6a). Grid cells mapped

in a similar colour are predicted to have similar biological com-

position, while cells mapped in a very different colour are pre-

dicted to be highly dissimilar in composition.

In a region containing a very large number of grid cells it will

usually not be feasible to apply multidimensional scaling directly

to all possible pairs of cells. In this situation the scaling can be

performed using a randomly selected sample of cells. Ordination

scores for the other cells are then assigned through some form of

interpolation, such as that based on k-nearest neighbours, using

weights proportional to the predicted similarity (the complement of

predicted dissimilarity) between sampled and unsampled cells. A

similar approach to visualizing spatial pattern in beta diversity

has been described recently by Thessler et al. (2005).

Constrained environmental classification

Predicted compositional dissimilarities can also be used as a basis

for clustering grid cells into discrete classes, employing some

Figure 6 (a) A visualization of spatial pattern in plant community 
composition in the Namaqualand region of South Africa, derived 
by applying metric multidimensional scaling to compositional 
dissimilarities predicted by a GDM model fitted to floristic survey 
data. Areas of similar colour are predicted to be floristically similar. 
(b) A 20-class classification of the region derived from the same 
predicted dissimilarities. (All floristic and environmental data were 
kindly provided by Philip Desmet, University of Cape Town.)
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form of numerical classification (Fig. 6b). As for the multi-

dimensional scaling approach described above, the initial classifi-

cation may need to be performed for a random sample of cells,

with each of the other cells then assigned to one of the resulting

classes based on a k-nearest neighbour analysis. Classes mapped

using this approach can be employed in conservation assessment

and planning in the same manner as classes derived through other

forms of environmental domain (or cluster) analysis (Mackey

et al., 1989; Fairbanks & Benn, 2000; Hargrove & Hoffman, 2004;

Trakhtenbrot & Kadmon, 2005). However, unlike these other

approaches that classify a region based on environmental similarity

(or dissimilarity) alone, the classification approach described

here is based on predicted biological dissimilarity. This is there-

fore a form of constrained environmental classification, in which

available biological data have been used to inform the trans-

formation and weighting of environmental variables such that

classes derived from these variables will match real biological

patterns as closely as possible.

Extrapolating distributions of species or predefined 
community types

The transformation of multidimensional environmental space

(and, optionally, geographical space) performed by GDM may

also serve as a useful pre-processing step in modelling the distribu-

tions of individual species. As part of a recent comparative study

of the performance of various species-modelling techniques

(Elith et al., 2006), we linked GDM to a simple kernel regres-

sion procedure (Lowe, 1995), thereby modelling the density of

presence records for each species within a GDM-transformed

environmental space (Fig. 7). The predictive performance of this

approach compared very favourably with other better-known

techniques for modelling species distributions. We have used a

similar approach to model distributions of vegetation communi-

ties in a number of recent vegetation mapping projects within

New South Wales, Australia (e.g. Department of Environment

and Conservation, 2004). In this case, records for individual

species are replaced by records for each of a set of community

types derived, for example, from a separate numerical classification

of floristic plots.

Survey gap analysis

The ability to predict patterns of compositional turnover in

unsurveyed parts of a region provides an ideal basis for directing

new survey or collection effort to locations that best complement

those already surveyed, thereby maximizing the likelihood of

encountering species not yet sampled within the region. We have

now applied this approach in a number of regions by linking

GDM to a survey-gap analysis procedure (Ferrier, 2002; Funk

et al., 2005; Fig. 8) based on the environmental diversity (ED)

technique of Faith & Walker (1996). As described by Ferrier

(2002) this approach offers a solid foundation for incremental

refinement of biological information in data-poor regions.

Figure 7 Tree-species distributions in Switzerland modelled by linking GDM to a simple kernel regression procedure, thereby modelling the 
density of presence records for each species within a GDM-transformed environmental space. See Elith et al. (2006) for further detail. Key: 
alnic = Alnus incana, fagsyl = Fagus sylvatica, pincem = Pinus cembra, querob = Quercus robur. The data used in this example were generated for 
a working group at the National Center for Ecological Analysis and Synthesis (NCEAS), Santa Barbara, USA, led by Town Peterson and Craig 
Moritz. The data were kindly provided by Antoine Guisan (University of Lausanne) and Nicolas Zimmerman (WSL Switzerland).
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Predictions from an initial GDM model, based on best-available

biological data, can be used to locate additional survey sites. Data

from these new sites can, in turn, be used to refine the model of

compositional turnover, thereby providing an improved basis for

selecting any further sites.

Conservation assessment

In the most extensive application of the technique to date, GDM

played a major role in an assessment of the representativeness of

the world’s protected area system associated with the 5th World

Parks Congress in 2003 (Ferrier et al., 2004). Modelled patterns

of compositional turnover within all of the planet’s terrestrial

biomes, combined with information on broad patterns of species

richness, were used to estimate the proportion of species-level

biodiversity represented in protected areas, with a particular

emphasis on plants and invertebrates. This assessment of repre-

sentativeness was performed using a novel analytical technique

combining elements of ED analysis with principles of the species-

area relationship (see Ferrier et al., 2004 for details). This same

technique has been used more recently to assess expected levels

of biodiversity loss in Madagascar resulting from past habitat lost

(T. Allnutt, pers. comm.).

Climate-change impact assessment

The GDM-based approach to conservation assessment devel-

oped by Ferrier et al. (2004) also has potential applicability to

predicting climate-change impacts. To date, most predictions of

distributional shifts expected to result from climate change have

been based either on modelling of individual species or on model-

ling of discrete biomes or community types (Ferrier & Guisan,

2006). As illustrated by the example depicted in Fig. 9, GDM

offers an alternative approach in which distributional shifts can

be assessed in relation to continuous gradients of compositional

turnover. This approach may allow potential climate-change

impacts to be assessed more rapidly, at a relatively fine resolution,

across extensive regions of the planet with sparse biological data.

Unlike other community-level approaches to predict distribu-

tional shifts in response to climate change, this approach does

not assume that species will move together as fixed community

types. The approach may therefore be relatively robust to high

individuality in species’ responses, provided that emergent

rates of spatial turnover in community composition along en-

vironmental gradients remain reasonably constant in the face of

climate change.

FUTURE DIRECTIONS

GDM provides a powerful means of analysing and predicting

spatial patterns in compositional turnover (beta diversity) across

very large regions. The approach can help make more effective

use of best-available biological and environmental data in a wide

range of assessment and planning activities. However, the

method is still relatively new and more work is needed to refine

and extend various aspects including, for example, techniques

for estimating confidence intervals around predicted compositional

dissimilarities and for better accommodating interactions

between environmental predictors. More attention also needs

to be directed to evaluating the predictive performance of GDM

in different environments and under different conditions, and

comparing the performance of GDM with other species-level

and community-level modelling strategies.
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Figure 9 A trial application of GDM to climate-change impact assessment in the Australian Wet Tropics. The assessment is based on a GDM 
model fitted to rainforest plant data. The proportional change in habitat area following climate change is estimated for each rainforest grid-cell 
in the region, using an adapted version of the GDM-based technique proposed by Ferrier et al. (2004) for assessing biological representativeness. 
The future climate layers were kindly provided by Susan Cameron (University of California, Davis) and were derived by downscaling the 
difference between current and future climate for the CCM3 2xCO2 scenario generated by Govindasamy et al. (2003), and adding this difference 
to current fine-scaled climate surfaces (Rainforest CRC, 2003). (The plant data used to fit the GDM model were kindly provided by Andrew Ford, 
CSIRO Sustainable Ecosystems.)
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