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Abstract. Statistical modelling of biological survey data in relation to remotely mapped environmental
variables is a powerful technique for making more effective use of sparse data in regional conservation
planning. Application of such modelling to planning in the northeast New South Wales (NSW) region of
Australia represents one of the most extensive and longest running case studies of this approach anywhere
in the world. Since the early 1980s, statistical modelling has been used to extrapolate distributions of over
2300 species of plants and animals, and a wide variety of higher-level communities and assemblages.
These modelled distributions have played a pivotal role in a series of major land-use planning processes,
culminating in extensive additions to the region’s protected area system. This paper provides an overview of
the analytical methodology used to model distributions of individual species in northeast NSW, including
approaches to: (1) developing a basic integrated statistical and geographical information system (GIS)
framework to facilitate automated fitting and extrapolation of species models; (2) extending this basic ap-
proach to incorporate consideration of spatial autocorrelation, land-cover mapping and expert knowledge;
and (3) evaluating the performance of species modelling, both in terms of predictive accuracy and in terms
of the effectiveness with which such models function as general surrogates for biodiversity.

Key words: Biodiversity, Northeast New South Wales, Regional conservation planning, Statistical
modelling, Surrogates

Introduction

A fundamental challenge confronting all efforts to retain biodiversity through in situ
protection is deciding which areas are most worthy of conservation action. The total
area of land that can be set aside, or otherwise managed, for conservation is often
severely limited by social and economic constraints. Care must therefore be taken to
direct scarce resources to areas of highest conservation priority, defined in terms of
both conservation value and degree of threat (Margules and Pressey 2000). Assess-
ments at a global or continental scale can help to focus attention on broad regions
(e.g. ecoregions) of particular conservation concern (e.g. Olson and Dinerstein 1998;
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Myers et al. 2000). However, a more detailed assessment is usually required within
each of these regions to guide decisions about the actual location of conservation
areas – whether these be strict reserves or areas protected by a range of other mea-
sures, including multiple-use management zones and conservation incentives and
controls on private land. This process of prioritising conservation action within rather
than between regions is referred to here as ‘regional conservation planning’ (Mar-
gules and Redhead 1995; Dinerstein et al. 2000; Groves et al. 2000).

To achieve conservation of biodiversity, regional planning must not only identify
conservation areas that will include or ‘represent’ as many elements of biodiversity as
possible, but must also ensure that these areas are sufficiently large, well connected
and well replicated to promote long-term persistence of the diversity they encom-
pass (Smith et al. 1993; Cowling et al. 1999). As a result of nearly two decades of
research and development work on ‘systematic’ conservation planning techniques,
there now exists a wide range of approaches, algorithms and software packages for
designing systems of conservation areas that are representative of the biodiversity of
a given region (see reviews by Pressey et al. 1993; Margules and Pressey 2000). A
prerequisite for using any of these approaches is the existence of information on the
spatial distribution of biodiversity. Unfortunately, such information is usually grossly
incomplete. Most entities of biodiversity – particularly at the species and genetic
levels – have not yet been discovered, let alone had their distributions mapped at a
spatial scale appropriate for regional conservation planning.

A widely applied solution to this problem is to use those entities for which we
do have distributional information as ‘surrogates’ for spatial pattern in biodiversity
as a whole (Noss 1990; Humphries et al. 1995; Vane-Wright 1996; Ferrier 1997;
Margules and Pressey 2000). Such surrogates commonly include species of particular
ecological or social significance (e.g. threatened, focal or flagship species; Lambeck
1997; Simberloff 1998; Caro and O’Doherty 1999) or all species within one or more
indicator groups (e.g. beetles, Anderson and Ashe 2000, or butterflies, Kremen 1994).
However, even for these surrogate species or groups of species, available information
on fine-scaled spatial distribution is usually far from complete. Knowledge of species
distributions is derived primarily from locational records – i.e. a species is observed
or collected at a particular geographical location. For most regions, the geographical
coverage of such information is sparse (Margules and Austin 1994; Lawes and Piper
1998; Maddock and du Plessis 1999; Soberón et al. 2000). Survey or collection sites
are often separated by extensive tracts of unsurveyed land. Furthermore, the location
of these sites is often biased towards population centres and access routes.

One way of filling geographical gaps in information on species distributions is
to use available biological survey data to derive statistical models relating species
presence or abundance to remotely mapped environmental variables – e.g. terrain, cli-
mate, substrate or land-cover variables. By integrating such modelling with geograph-
ical information system (GIS) technology, biological distributions can be extrapolated
across large regions, thereby providing geographically complete information for a
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wide range of environmental applications. The popularity of this approach has in-
creased dramatically in recent years, as evidenced by a rapidly growing scientific
literature on statistical and related techniques for modelling biological distributions,
and on the application of these techniques to environmental planning and manage-
ment (see reviews by Franklin 1995; Austin 1998; Guisan and Zimmermann 2000).

This paper adds to the existing literature by providing an overview of modelling
work conducted in the northeast New South Wales (NSW) region of Australia. This
particular case of the application of distributional modelling to regional conserva-
tion planning is one of the most extensive to date anywhere in the world. Statistical
modelling and GIS-based extrapolation of species distributions was first applied in
the region in the early 1980s and has since been used to model distributions of over
2300 individual species of plants and animals, in addition to modelling distributions
of a variety of higher-level communities and assemblages. During the past 6 years,
these modelled biological distributions have played a pivotal role in a series of gov-
ernment-led planning processes, resulting in major additions to the region’s protect-
ed area system. The extensive biological and environmental datasets established for
northeast NSW have also been employed as a test-bed for research on the performance
of alternative modelling approaches and techniques.

This paper provides a broad overview of the analytical methodology used to model
distributions of individual species in northeast NSW. A companion paper (Ferrier
et al. 2002; this issue) describes the approaches used to model distributions of com-
munities and assemblages. We start by outlining the planning context within which
the modelling work was performed, and the specific roles that distributional model-
ling played in this planning. Next we describe how statistical modelling was integrat-
ed with GIS technology to provide a basic, yet robust, approach to modelling species
distributions by linking biological survey data to remotely mapped environmental
variables. We indicate a number of ways in which this modelling was refined by
extending the basic approach to incorporate consideration of spatial autocorrelation,
land-cover mapping and expert knowledge. We then describe how the performance of
species models was evaluated, both in terms of predictive accuracy and in terms of the
effectiveness with which such models function as general surrogates for biodiversity.
Readers interested in accessing more detailed information on any particular aspect of
the work are encouraged to consult the cited papers and reports.

Biodiversity modelling and conservation planning in northeast New South
Wales

The planning context

The work described in this paper concerns three adjoining bioregions (Thackway and
Creswell 1997) in northeast NSW – the NSW North Coast Bioregion, the New England
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Figure 1. The three bioregions addressed by this study. The bold line delineates the area within which
most modelling work was conducted.

Table 1 and Bioregion and the Nandewar Bioregion (Figure 1). The combined area of
these bioregions is 106 400 km2, of which almost 50% has been cleared of native vege-
tation. The vegetation of northeast NSW is a mosaic of rainforest, moist and dry euca-
lypt forest and dry eucalypt woodland, with smaller areas of swamp, heath, scrub and
native grassland. Most of the rainforest and taller eucalypt forest is confined to the NSW
North Coast Bioregion and the eastern half of the New England Table 1 and Bioregion.
These forests are recognised as constituting one of the major centres of floristic diver-
sity on the Australian continent, and support one of Australia’s richest and most diverse
vertebrate faunas, including a high number of endemic and endangered species
(Ferrier et al. 2000b). These same forests are also a major source of native timber, and
have therefore been the focus of a long-running conflict between the needs of commer-
cial forest harvesting and the protection of biodiversity, old growth and wilderness
values. Much of the biological survey and modelling work conducted in northeast NSW
has therefore been concentrated within these forested areas (Figure 1).
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During the past decade, most assessment and planning initiatives for Australia’s
forests have been underpinned by a National Forest Policy Statement developed joint-
ly by the Commonwealth, State and Territory Governments (Anonymous 1992). In
addressing the issue of nature conservation the statement proposed that “parts of the
public native forest estate will continue to be set aside in dedicated nature conser-
vation reserve systems to protect native forest communities, based on principles of
comprehensiveness, adequacy and representativeness” and that “there will be com-
plementary management outside reserves”.

The development of a comprehensive, adequate and representative reserve sys-
tem within the public forests of northeast NSW has proceeded in three main stages:
(1) The Deferred Forest Assessment completed in 1995 evaluated existing levels of
reservation of biodiversity, old growth and wilderness values and identified areas of
forest that were to be deferred from logging pending more rigorous evaluation. (2)
The Interim Forest Assessment Process completed in 1996 refined the areas identified
by the Deferred Forest Assessment through a more intensive analysis of all available
data. (3) The Comprehensive Regional Assessment, conducted over a 3-year period
(1996–1998), was the most rigorous of the three assessment stages and led to the
identification and gazettal of extensive additions to the reserve system as part of a
Regional Forest Agreement between the State and Commonwealth Governments.

Since the completion of the Comprehensive Regional Assessment, the datasets and
analytical approaches developed in northeast NSW have continued to be employed in
a number of ongoing assessment and planning activities. The most notable of these are
the NSW Regional Vegetation Planning process which, unlike the processes described
above, is focusing on private (freehold) land rather than public land, and a bioregional
conservation assessment within the Nandewar Bioregion (Figure 1).

Data sources

Work on the environmental and biological databases that have underpinned the
above assessments commenced many years before the first planning decisions were
made by the Deferred Forest Assessment in 1995. In the late 1980s the NSW
National Parks and Wildlife Service (NSW NPWS) initiated the establishment of an
environmental GIS database for northeast NSW, containing mapped and modelled
layers pertaining to topography, climate, substrate, vegetation cover and disturbance.
This database was consolidated as part of the North East Forests Biodiversity
Study conducted by NSW NPWS between 1991 and 1994 (Ferrier et al. 2000a),
and has been further refined during the series of forest assessment processes
conducted since 1995 (Ferrier 2000). The database was initially established within
the Environmental Resource Mapping System (E-RMS), a PC-based GIS package
developed in-house by NSW NPWS (Ferrier 1992b), but was later transferred to
ArcView (ESRI). Most environmental layers in the database are currently stored at
a 1 ha (100 m × 100 m) grid-cell resolution.
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A fine-scaled digital elevation model (DEM) based on 1:25 000 topographic data
was used to derive a number of topographic indices including slope, aspect, wet-
ness (or compound topographic) index, topographic position and ruggedness. The
DEM was also coupled with ESOCLIM climate-surface models (Hutchinson et al.
1997) to derive estimates of long-term mean temperature, rainfall, solar radiation
(adjusted for surrounding terrain) and evaporation (also terrain-adjusted). Soil fertility
was modelled as a function of mapped lithology and soil landscapes, guided by expert
opinion and information extracted from soil surveys and geochemical analyses. Soil
depth was modelled as a function of lithology, terrain and climate using depth data
obtained from all available soil surveys. Modelled soil depth was further combined
with monthly rainfall and evaporation surfaces to derive a soil moisture index based
on a simple water balance model.

Vegetation cover was mapped at two spatial scales: (1) broad-scaled (1:100 000)
mapping of structural systems derived from Landsat TM imagery; and (2) fine-scaled
(1:25 000) mapping of floristic types derived from interpretation of aerial photography.
The fine-scaled mapping was initially confined to forests on public land, but was later
extended to cover vegetation on all land tenures as part of the Comprehensive Regional
Assessment. This assessment also divided all mapped areas of forest into growth stages
reflecting the intensity of, and time since, logging and other disturbance.

In 1991 NSW NPWS initiated an extensive program of flora and fauna surveys
in northeast NSW, as part of the North East Forests Biodiversity Study (Hines et al.
2000). The surveys were designed to collect data that would supplement existing
biological datasets. Survey sites were located according to an environmental strati-
fication based on the GIS layers described above, thereby ensuring that sites were
well spread across the environmental variation of the region. The surveys targeted
mainly vascular flora and vertebrate fauna, although a subset of the fauna sites was
also surveyed for ground-dwelling arthropods (ants, beetles and spiders) in a joint
project with the Australian Museum. By 1995 over 277 000 locational records had
been assembled for 4207 species of vascular plants, vertebrates and ground-dwelling
arthropods. These data formed the basis for most of the modelling work described in
this paper.

Additional flora and fauna surveys conducted during the Comprehensive Regional
Assessment (1996–1998) were designed to fill remaining environmental and geo-
graphical gaps in the coverage of survey sites throughout the forests of northeast
NSW. Since 1999 most survey effort has been redirected to the eucalypt woodlands
of the Nandewar Bioregion and the western half of the New England Tableland
Bioregion.

The role of modelling

Despite the extent of biological survey data collected during the North East Forests
Biodiversity Study and subsequent assessments these data did not, on their own, pro-
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vide sufficient spatial coverage for conservation planning. Most planning decisions
needed to be made at the scale of individual forestry compartments with an average
area of approximately 200 ha. Only a small proportion of these compartments had
been subjected to any kind of direct biological survey. Statistical modelling was there-
fore used to extrapolate biological distributions across unsurveyed parts of the region
by modelling relationships between available biological survey data and remotely
mapped environmental layers (Ferrier and Smith 1990; Ferrier 1991, 1997; Ferrier
and Watson 1997; Ferrier et al. 2000d).

Decisions about the location of new forest reserves in northeast NSW were guid-
ed by a set of agreed regional protection targets for various entities of biodiversity,
old growth forest and wilderness (Commonwealth of Australia 1997). In the case of
biodiversity, protection targets were specified for two types of entities – (1) forest
communities (or ‘ecosystems’) that served as a general surrogate, or ‘coarse-filter’
(sensu Noss 1987), for biodiversity as a whole, and (2) individual species of par-
ticular conservation concern (i.e. ‘fine-filter’ species) (Figure 2). Protection targets
for communities were specified as a percentage of the original (preclearing) area of
each community, while targets for individual species were specified as a minimum
viable habitat area based on expert opinion and, where appropriate, population via-
bility analysis. Statistical modelling played a role in mapping the spatial distribution
of both types of entities.

Modelled distributions of species and communities were integrated with spatial
data on other conservation entities (old growth forest, wilderness) and socio-eco-
nomic values (Figure 2), within an interactive decision-support system developed
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Figure 2. The role of modelling in relation to the overall framework for regional conservation planning in
northeast NSW.
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by NSW NPWS. This system was employed by teams of negotiators to map conser-
vation priorities across the region, to assess alternative conservation scenarios, and
to record land-use decisions (for further information on the decision-support system
and the decision-making process see Finkel 1998; Pressey 1998, 1999; Ferrier et al.
2000c).

Developing a robust statistical approach to modelling species distributions

The approach used to model species distributions in northeast NSW needed to be capa-
ble of handling a vast quantity of data for a very large number of species. Furthermore,
these species needed to be modelled and extrapolated in relation to relatively fine-scaled
environmental variables, thereby producing mapped outputs at an appropriate spatial
resolution for the planning task at hand. This demanded a high level of automation, both
in the fitting of statistical models and in the extrapolation of these models to produce spa-
tial GIS layers for use in conservation planning and decision-making. Despite the need
for automation there was also a clear requirement that distributions should be predicted
as accurately as possible, and that the level of reliability or uncertainty associated with
each model should be clearly communicated to users.

Background to the general approach

The use of statistical modelling to predict potential distributions of species has a
relatively long history of application in northeast NSW. In the early 1980s the re-
gional distribution of a single species of conservation concern – the Rufous Scrub-
bird Atrichornis rufescens – was mapped by using generalised linear modelling
(GLM; McCullagh and Nelder 1989) to derive a logistic regression model relating
field survey data to coarse-scaled climate, terrain and vegetation variables stored
in a rudimentary GIS database (Ferrier 1984, 1991). This appears to be one of the
earliest applications anywhere in the world of the integrated use of GLM and GIS to
model species distributions. In the late 1980s NSW NPWS further employed GLM
to model several other species in northeast NSW, aided by the parallel refinement of
environmental GIS layers for the region. During this period considerable effort was
also devoted to developing and applying an alternative approach to species model-
ling based on classification and regression trees (or ‘decision-trees’) (Brieman et al.
1984; Ferrier and Smith 1990; Stockwell et al. 1990; Moore et al. 1991). This work
culminated in the development of a predictive modelling module for E-RMS. The
module facilitated rapid derivation and spatial extrapolation of decision-tree models
within a seamless GIS environment. The decision rules constituting a model could
be derived either by automated induction based on the analysis of biological survey
data in relation to environmental GIS layers, or by interactive specification based on
expert knowledge (Ferrier 1992a).
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With the commencement of the North East Forests Biodiversity Study in 1991,
attention shifted to evaluating generalised additive modelling (GAM; Hastie and Tib-
shirani 1990; Yee and Mitchell 1991) as a possible alternative to GLM and decision-
tree modelling. Preliminary trials suggested that GAM offered a good compromise
between the statistical rigour and parametric power of GLM and the non-parametric
flexibility of decision-tree modelling and other ‘machine learning’ approaches such
as artificial neural networks and genetic algorithms. GAM was therefore adopted as
the principal technique used to model species distributions in the North East Forests
Biodiversity Study (1991–1994), and in all subsequent conservation assessments in
the region.

GAM is an extension of GLM, which is itself an extension of ordinary linear
regression. Linear regression fits linear (straight line) functions relating a response
(dependent) variable to one or more predictor (independent) variables. A basic as-
sumption of linear regression is that the relationship between the response variable
and each of the predictors can be approximated by a straight line. A further assump-
tion is that the variance associated with the response is homogeneous across the full
range of response values. GLM relaxes both of these assumptions by providing a class
of models that allow non-linearity and heterogeneous variance in response variables.
Each class of GLM (e.g. logistic regression for modelling binary response data) is
defined in terms of a link function that specifies the relationship between the mean of
the response and the linear predictor (the sum of the effects of the individual predictor
variables), and a variance function which relates the variance of the response to its
mean. Once appropriate link and variance functions have been specified, models are
fitted by iteratively reweighted least squares (McCullagh and Nelder 1989).

The flexibility of GLM for modelling species responses to environmental variables
is still limited by the linear nature of the predictor employed in the link function. This
limitation can be partly relieved by adding polynomial terms – e.g. both linear and
quadratic terms can be included for each environmental variable to accommodate sym-
metric bell-shaped response curves (Austin et al. 1984). GAM provides a much more
natural and flexible solution to this problem (Yee and Mitchell 1991; Leathwick 1995;
Austin and Meyers 1996). Models fitted using GAM have the same link and variance
functions as those fitted using GLM, except that the effect of each predictor variable is
specified as a non-parametric smooth function, estimated from the data using techniques
originally developed for smoothing scatterplots (most commonly cubic splines). The
principal difference between GAM and GLM in modelling species distributions is that
GAM allows the survey data to determine the shape of response curves, instead of being
constrained by any particular parametric form. In other words, fewer assumptions are
made about how species respond to their environment.

The progression from GLM to GAM as the primary basis for modelling species
distributions in northeast NSW has also occurred in several other parts of the world,
including New Zealand (e.g. Leathwick 1998), the USA (e.g. Franklin 1998) and
Europe (e.g. Bio et al. 1998).
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Integrating statistical and GIS software

All models derived during the North East Forests Biodiversity Study and subsequent
assessments were fitted using GAM-based logistic regression, within the S-PLUS sta-
tistical package (MathSoft). To facilitate spatial extrapolation of species distributions,
special in-house software was developed to interface the S-PLUS modelling functions
to GIS software – initially to E-RMS, and later to ArcView. The basic components of
this integrated system are depicted in Figure 3 (see also Ferrier et al. 2000d).

To fit models for one or more species, data for all relevant survey sites were ex-
tracted from the GIS, and associated database management system (DBMS) tables,
and loaded into an S-PLUS data frame (a rectangular matrix). Each row of this data
frame represented a surveyed site. The columns of the data frame were arranged in
two blocks. The first block contained values for the predictors – both environmental
predictors (i.e. values for environmental GIS variables at each site) and any additional
covariates relating to the survey effort expended at each site (e.g. number of trap-
nights) and the conditions under which each site was surveyed (e.g. time of year,
weather conditions). The second block contained a column for each of the species to
be modelled, indicating the presence or absence of that species at each surveyed site
(0 = absent, 1 = present).

Once an appropriate data frame had been constructed, S-PLUS was used to fit
a GAM-based logistic regression model to the data for each species. The predictors
included in each model were chosen using a simple forward selection procedure, in
which predictors were added to the model one at a time (we note however that forward
selection is now generally regarded as being slightly less effective than backward
selection of predictors; T.J. Hastie, personal communication). The predictor selected
at each step was that which best improved the fit of the model, in terms of reduc-
tion in deviance. This process continued until none of the remaining predictors could
significantly improve the fit (at the P < 0.05 significance level). During the for-
ward selection process all functions for continuous predictors were fitted using cubic
smoothing splines with four degrees of freedom. Once all predictors to be included in
a model had been selected, each continuous predictor was re-evaluated to determine
whether the function fitted with four degrees of freedom could be replaced by a sim-
pler function with three or two degrees of freedom, without incurring a significant
(P < 0.05) increase in the deviance of the model.

Two types of output were produced for each model: (1) plots (graphs) depict-
ing the fitted functions relating probability of occurrence to each selected predictor;
and (2) spatial GIS layers depicting probability of occurrence throughout the entire
region, as predicted by the model. The plots of fitted functions were derived using
special-purpose software developed in S-PLUS. A separate plot was produced for
each predictor. Each plot depicted the expected probability of occurrence of a spe-
cies in relation to varying values of a given predictor, holding all other predictors
constant at their mean values. Probability of occurrence was plotted on a cube-root
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scale to emphasise variation at the lower end of the probability range. This facilitated
ready interpretation of environmental relationships of rarer species that were often
indiscernible if plotted on an untransformed probability scale. The distribution of
surveyed sites in relation to the predictor was indicated by two ‘rugs’ of tick-marks,
one at the top of the graph for sites at which the species was recorded as present,
and the other at the bottom of the graph for sites at which the species was recorded
as absent. Each plot also depicted the upper and lower 95% confidence limits for the
displayed function.

The derivation of spatial GIS layers depicting predicted probability of occurrence
presented a special challenge. When models are fitted using GLM, predictions can be
readily derived and mapped within a GIS because, in this case, predicted probability
of occurrence is defined as a mathematical function of predictors stored as spatial
layers within the GIS. However, the smooth functions fitted using GAM cannot eas-
ily be specified as mathematical formulae (Hastie and Tibshirani 1990). This means
that probability of occurrence, as predicted by such a model, cannot be derived and
mapped as a simple mathematical function of GIS layers representing the predictors.
S-PLUS has the capability to predict the response for a model fitted using GAM,
given any specified set of values for the predictors. While in theory this capability
could be used to make a prediction for every grid cell in the region of interest, in
practice this approach is far too slow and cumbersome for a large region containing
many millions of grid cells.

An alternative approach was developed during the North East Forests Biodiversity
Study that enabled much faster spatial extrapolation of species models fitted using
GAM. This involved using S-PLUS to prepare a ‘look-up table’ of function values
and associated standard errors for a discrete set of values for each predictor. For con-
tinuous predictors a specified number of values (at least 30) was sampled evenly
across the range of the predictor. This look-up table was then passed to the GIS,
thereby allowing the predicted probability of occurrence (and associated confidence
limits) for each grid cell to be calculated by simply extracting the appropriate function
values and standard errors from the table. Where the value for a predictor in a given
grid cell fell between two values in the look-up table, the required function value and
standard error were estimated by simple linear interpolation.

Three mapped probability surfaces were derived and stored within the GIS for
each modelled species. One surface contained the predicted probability of occurrence
for each and every grid cell in the region. The other two surfaces contained esti-
mates of the upper and lower 95% confidence limits for this predicted probability.
As well as portraying the magnitude of error associated with predictions in differ-
ent parts of the region, the confidence limit surfaces provide important information
for specific planning and management activities. For example, the lower confidence
limit is of particular relevance to activities that need to identify areas where we are
highly confident a species exists – e.g. selection of conservation reserves. On the other
hand, the upper confidence limit is useful for activities that require confidence in the
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absence of a species – e.g. environmental impact assessment. The confidence limits
were estimated directly from the standard errors provided by S-PLUS. While some
early investigation was conducted into using bootstrapping to derive more robust con-
fidence limits for mapped predictions (Ferrier and Watson 1994), the computation
time required by this approach rendered it impractical for routine application.

The modelling process just described was largely automated, and was designed
to allow large number of species to be modelled in batches. Between 1991 and 1994
the North East Forests Biodiversity Study derived distributional models for 1684 vas-
cular plant species (both canopy and understorey species) and 713 vertebrate ani-
mal species (amphibians, reptiles, birds and mammals). Some species of particular
conservation concern were later remodelled as part of the Comprehensive Regional
Assessment using expanded survey datasets and refined environmental layers (NSW
NPWS 1999). This remodelling also made greater use of expert knowledge in de-
veloping and refining models (see the section below on ‘incorporating expert knowl-
edge’).

The integrated modelling process and software routines developed during the
North East Forests Biodiversity Study were later adopted as the foundation for a more
generic species modelling system (SPMODEL) developed by Environment Austra-
lia, an Australian Commonwealth Government agency (Watson 1996; Bennett et al.
1997). Through this system many of the modelling techniques pioneered in northeast
NSW have now been applied more widely to conservation assessments in other parts
of Australia, particularly to Comprehensive Regional Assessments in southeast NSW,
Queensland, Western Australia and Victoria (e.g. Gioia and Pigott 2000). Some of the
specific techniques employed originally in the northeast NSW modelling work (e.g.
the use of look-up tables for spatial extrapolation) have also been incorporated into
another more recently developed system for species modelling – GRASP (Lehmann
et al. 2002).

Modelling ‘presence-only’ data

The modelling process described above was designed primarily for survey datasets
in which each species of interest is recorded as either present or absent at each of
a set of surveyed sites – i.e. ‘presence/absence’ data. This type of data is typically
collected only by rigorously designed surveys such as those conducted in northeast
NSW. Many regions of the world lack sufficient presence/absence data to model spe-
cies distributions reliably. Even in northeast NSW, despite the extensive survey effort
of the past decade, insufficient data have been generated for a number of species of
particular conservation concern. These species are often very rare and/or difficult to
detect and have therefore yielded few presence records in the presence/absence data-
set, even after surveying many hundreds, or thousands, of sites. However, for some
of these species, a larger number of presence records were collated from museum
and herbarium collections, and ad hoc field observations. Such data are often referred
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to as ‘presence-only’ data because, while they indicate locations at which a species
has been recorded as present, they provide no indication of the other locations that
were searched unsuccessfully. Without this additional information, variation in sur-
vey effort between different environments and geographical areas cannot be readily
controlled, or adjusted, for in the fitting of distributional models. Real relationships
between a species and its environment can be easily confounded by spurious patterns
resulting from sampling bias.

The need to model distributions of rarer species in northeast NSW often presented
an interesting dilemma. Say, for example, a species was recorded at only two sites in
the presence/absence survey dataset, but had been recorded at another 70 locations in
museum collections. Modelling of the presence/absence data for this species would
achieve little, given the small number of presence records, but might it still be worth
attempting to derive a model from the presence-only data? In many regions of the
world this choice is even starker, because presence/absence data are often non-exi-
stent (even for common species) and any modelling must therefore rely solely on
presence-only data. The strategy adopted in northeast NSW was to employ presence-
only data to model only those species for which a reasonable model could not be
derived from presence/absence data alone.

In the North East Forests Biodiversity Study presence-only data were modelled
using a modified version of the GAM-based approach employed for presence/absence
data. This involved fitting a logistic regression model to a data frame containing all
sites where a species had been recorded as present, in addition to a set of ‘pseudo-ab-
sence’ sites (Ferrier and Watson 1997; Ferrier et al. 2000d). The latter was generated
by locating sites randomly across the total geographical area, or ‘domain’, of interest.
Depending on the source of presence data, this domain might be variously defined
as the entire study region, or as some ‘surveyable’ portion of the region – e.g. all
areas of forest within a specified distance of access routes – in an attempt to address
likely spatial bias in survey coverage. The pseudo-absence sites were not intended as a
sample of sites at which the species was truly absent, but rather as a sample of all sites
within the domain. The approach is therefore analogous to that commonly employed
to analyse ‘used-vs.-available’ data in the development of resource selection models
(Manly et al. 1993; Boyce et al. 2002).

A sufficiently large sample of pseudo-absence sites was generated (typically 1000
sites) to provide reasonable representation of the environmental variation exhibited by
the domain. However, when GAM was used to fit a logistic regression model to the
combined presence and pseudo-absence data, each pseudo-absence site was down-
weighted in the analysis to emulate an equal number of presences and absences. This
was achieved by using the case-weighting option provided by S-PLUS. For exam-
ple, if 1000 pseudo-absence sites were being used, then each presence site would be
assigned a weight of one while each pseudo-absence site would be assigned a weight
of n/1000, where n is the number of presence sites. This weighting facilitated the
estimation of approximate degrees of freedom, deviances and significance levels for
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the fitting of presence-only models. The weighting also enabled predictions to be
expressed in terms of a relative index of likelihood of occurrence ranging from 0 to
1. These predictions indicated those parts of the region where a species is most likely
to occur, but provided no estimation of the actual probability of occurrence. Zaniewski
et al. (2002) have further evaluated and refined this presence-only modelling tech-
nique using data on New Zealand ferns.

Refining species models by extending the basic approach

To improve the accuracy of modelled species distributions in northeast NSW, the
basic approach described above was in some cases extended to: (1) address spatial
autocorrelation in the distribution of species; (2) incorporate mapped land-cover at-
tributes, derived from interpretation of aerial photography or satellite imagery, as ad-
ditional predictors alongside abiotic environmental variables; and (3) integrate expert
knowledge of species distributions and habitat requirements.

Addressing spatial autocorrelation

The basic modelling process depicted in Figure 3 assumes that the probability of
a species occurring in a given grid cell is determined purely by the environmental
characteristics, or ‘habitat suitability’, of that cell. Two cells sharing the same values
for all environmental variables will therefore be predicted to have the same prob-
ability of occurrence, regardless of where these cells are located geographically. In
other words, even though predictions are mapped onto geographical space, geography
is not considered directly in the fitting of models. Models are fitted entirely within
environmental space. In the real world, however, species distributions may exhibit
spatial pattern or ‘autocorrelation’ (Legendre 1993) that cannot be explained purely
in terms of the environment or habitat at each grid cell in a region (no matter how
finely and accurately this environment is measured). Incorporating consideration of
spatial autocorrelation into modelling of species distributions is a challenge that has
attracted increasing research interest in recent years (e.g. Augustin et al. 1996; Miller
and Franklin 2002). As part of the modelling work conducted in northeast NSW, at-
tention has been focused on two specific problems relating to spatial autocorrelation,
at two quite different spatial scales.

At the coarse biogeographical scale, range limits associated with historical dis-
persal barriers or competition may result in a species being absent from areas of
apparently suitable habitat. In northeast NSW this problem was addressed initially by
simply including latitude as an additional predictor in species models, given that most
range limits in this region are latitudinal. Early trials were also conducted in using a
more sophisticated approach in which geographical space was incorporated into mod-
els as a two-dimensional predictor (Ferrier and Watson 1994). This was achieved by
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modelling the relationship between probability of occurrence and geographical loca-
tion as a two-dimensional smooth surface fitted using ‘loess’ (Cleveland et al. 1992),
a local regression smoothing technique. The principal advantage of this approach
over simply employing latitude and/or longitude as one-dimensional predictors was
that it allowed for more complex interactions between these variables in shaping the
distribution of species. The approach is effectively a non-parametric equivalent of
using polynomial regression or trend surfaces to incorporate geographical space into
parametric multiple regression models (Legendre 1993).

An example of the application of the approach in northeast NSW is provided in
Figure 4. Here the distribution of a species of reduced-limbed skink (Ophioscincus

Figure 4. A GAM-based logistic regression model for the reduced-limbed skink Ophioscincus truncatus,
employing geographical space as a two-dimensional predictor (loess surface) alongside three one-dimen-
sional environmental predictors.
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truncatus) has been modelled using GAM, employing geographical space as a
two-dimensional predictor alongside three one-dimensional environmental predictors.
All of the predictors are integrated within a single multivariate model – i.e. the
smooth surface relating probability of occurrence to geographical location controls
for the effects of the environmental variables, while the smooth functions fitted to the
environmental variables control for the effects of geographical location. The model
suggests that this species is confined to the northeastern portion of the study area,
despite the presence of potentially suitable habitat further south. Incorporating geo-
graphical space as a two-dimensional predictor in this manner greatly increases the
computation time required to fit models. The approach was therefore not applied rou-
tinely during the northeast Forests Biodiversity Study. However, it was later refined
and incorporated into the SPMODEL system (Watson 1996) and was employed suc-
cessfully during the Comprehensive Regional Assessment to derive refined models
for a number of priority faunal species (NSW NPWS 1999). The approach offers a
powerful and flexible means of addressing coarse-scaled spatial autocorrelation in
modelling of species distributions, and is therefore worthy of further investigation
and refinement.

At finer spatial scales, patchiness in the distribution of species within apparently
suitable habitat can result from a wide range of biological and historical factors, some
of which operate in a deterministic manner while others are relatively stochastic.
While some of this variation may therefore be predictable, a portion will always re-
main as unexplained ‘noise’. In northeast NSW attention was focused on modelling
distributional patchiness as a function of the spatial context of individual grid cells.
For many species – particularly faunal species with large home ranges (e.g. owls,
marsupial gliders) – the probability of occurrence within a given grid cell is likely to
depend not only on the suitability of habitat within that cell but also on the suitability
and spatial configuration of habitat in neighbouring cells. According to ecological
principles of metapopulation dynamics (Hanski 1999b), such species are more likely
to occur in large well-connected patches of suitable habitat than in small isolated
patches.

As an initial approach to factoring spatial context into faunal models for northeast
NSW, several ‘contextual indices’ were derived from the available environmental pre-
dictors. These indices measured characteristics of the environment within a specified
radius of each grid cell of interest or ‘focal cell’ – e.g. the proportion of cells within a
500 m radius that contain rainforest, or the mean level of disturbance within a 2000 m
radius. An inverse-distance weighting was applied in calculating each index, thereby
ensuring that cells close to the focal cell had a greater effect than cells further away.
Contextual indices were added to the list of environmental variables considered as
candidate predictors when fitting faunal models. These indices featured prominently
in models for a large number of species, particularly those with large home ranges.
Two of the environmental predictors included in the model depicted in Figure 4 are
contextual indices.
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The strategy used to address spatial context in faunal habitat modelling in north-
east NSW has recently been refined through employment of autologistic regression.
Our particular approach is an extension of that proposed by Augustin et al. (1996)
in which a term for autocorrelation – the ‘autocovariate’ – is incorporated as an
additional predictor in a standard logistic regression model. In Augustin et al. ’s
original approach the autocovariate is estimated as a weighted average of the ob-
served or predicted occurrence of a species in all grid cells within a specified neigh-
bourhood, where the weight applied to each grid cell is simply the inverse of the
Euclidean distance from the focal cell. This approach assumes that the effect of
a neighbouring cell is purely a function of distance. Yet, in reality, this effect is
likely to depend not only on the distance between cells but also on the nature of
intervening habitat. A neighbouring cell containing suitable habitat is likely to have
less effect if it is separated from the focal cell by a barrier of unsuitable habitat
than if the two cells are linked by a continuous block of suitable habitat. The weight-
ing of neighbouring cells in the derivation of autocovariates for faunal modelling
should therefore reflect connectedness (or accessibility) rather than simply distance.

In our approach the autocovariate for focal cell i is defined more generally as:

autocovi =
ki∑

j=1

exp(−αdij )p̂j

where ki is the number of cells within a neighbourhood (square or circle) of specified
size centred on the focal cell, dij is the ‘effective distance’ between cell j and the
focal cell, pj is the predicted probability of occurrence in cell j, and α is a constant
determining the effect of distance on isolation for the species of interest (Ferrier et al.
1999b; Drielsma and Ferrier, in preparation).

This formulation closely resembles that sometimes employed in metapopulation
ecology to measure the ‘habitat neighbourhood’ around a specified location (Hanski
1999a,b). We estimate effective distances between cells by first assigning an ‘im-
pedence multiplier’ to every grid cell in the region. This multiplier determines what
contribution a cell lying on the path between two other cells will make to the effective
distance between those cells. For example, if the path between two cells crosses a
100 m cell with a multiplier of 1.5 then 150 m will be added to the effective dis-
tance. The multiplier can be derived in many different ways but, to date, has usually
been specified as some inverse function of predicted probability of occurrence. In
other words, grid cells predicted to be of higher habitat suitability are assigned lower
values for the multiplier, and therefore contribute less to effective distances, than do
cells of lower habitat suitability. Once values for the multiplier have been derived,
the effective distance between any given pair of cells is estimated by searching for
the shortest path (in terms of effective distance) between those cells. The effective
distance associated with this potentially convoluted path thereby provides a mea-
sure of connectedness between a focal cell and each of the other cells in a specified
neighbourhood.
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As for any autologistic modelling in which the autocovariate is based on predicted
rather than observed response values, models derived using our approach must be
fitted iteratively. Initially, GAM is used to fit a model without the autocovariate – i.e.
using the environmental predictors alone. The mapped probability surface derived
from this initial model is used to calculate values for the autocovariate at each sur-
veyed site. The model is refitted, incorporating the autocovariate alongside the other
environmental predictors, and is then used to derive a new mapped probability surface
from which new values for the autocovariate are calculated. This process is repeated
iteratively until convergence. An example is provided in Figure 5. We have optimised
estimation of the autocovariate for GIS datasets containing very large numbers of
grid cells by employing shortest-path search algorithms derived from graph theory
(Drielsma and Ferrier, in preparation).

Application of this autologistic modelling approach in northeast NSW has been
largely experimental to date. However, early results of testing suggest that the tech-
nique represents a substantial improvement over autologistic approaches that ignore
connectivity in the estimation of autocovariates. One possible shortcoming of the
approach is that expert ecological knowledge is required to estimate some of the
parameters used in calculating the autocovariate – i.e. the constant α, and the function
relating impedence to predicted probability of occurrence. Future attention needs to
be given to the possibility of employing global optimisation techniques (e.g. simu-
lated annealing), in conjunction with GAM, to estimate these parameters from the
survey data as part of the model fitting process.

Figure 5. An example of the application of autologistic regression modelling to incorporate spatial context
into a distributional model for the marsupial Greater Glider Petauroides volans. Darker levels of grey
indicate higher probabilities of occurrence for this species. Note that small isolated fragments of habitat
predicted by the original model are effectively downgraded by the autologistic regression modelling.
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Incorporating land-cover mapping

Statistical modelling of species distributions is often based purely on abiotic envi-
ronmental predictors that describe various attributes of terrain, climate and substrate.
This approach is predicated on an assumption that these variables are sufficient to
explain observed biological distributions. In other words, such modelling assumes
a direct deterministic relationship between species distributions and mapped abiotic
environmental variables. In reality, however, this relationship may be far from perfect
if environmental variables are not mapped at a sufficient level of spatial resolution
and accuracy, or if key variables are not considered in the modelling. A particularly
challenging example of the latter relates to the role that past disturbance may play in
shaping current biological distributions. For example, in northeast NSW the current
distribution of rainforest, and therefore all species associated with rainforest, has been
shaped in part by relatively stochastic fire events occurring over many thousands of
years. Variables describing the current abiotic environment of the region can therefore
explain only a proportion of the pattern in rainforest distribution. However, rainfor-
est can be mapped very accurately through interpretation of aerial photography or satel-
lite imagery. Such mapping can greatly improve the accuracy with which distributions
of rainforest-associated species are modelled.

Modelling of species distributions in relation to abiotic environmental variables
is sometimes viewed as a competing alternative to more traditional techniques of
land-cover mapping, particularly mapping of vegetation types. However, in our
modelling work in northeast NSW, we have instead viewed abiotic environmental
mapping and land-cover mapping as complementary sources of information that can
assist in explaining and modelling biological distributions. Variables derived from
land-cover mapping were incorporated as predictors in species models, alongside
abiotic environmental predictors. In its simplest form this involved treating broad
vegetation types mapped from satellite imagery and aerial photography (e.g.
rainforest, moist eucalypt forest, dry eucalypt forest) as levels of a factor variable
(Ferrier et al. 2000d).

During the Comprehensive Regional Assessment a more refined approach was
developed to incorporate land-cover mapping into modelling of faunal species of spe-
cial conservation concern. This involved deriving ‘habitat indices’ from fine-scaled
(1:25 000) mapping of vegetation types and growth stages (NSW NPWS 1999; Pearce
et al. 2001b). Aerial photograph interpretation had been used to divide the region’s
forests into 110 unique forest types, and each of these types had been further sub-
divided into seven growth stage classes, yielding a total of 770 potential combina-
tions of forest type and growth stage. It was clearly impractical to incorporate this
classification into statistical modelling by simply treating each mapped combination
as a separate class of a factor variable. Many of the combinations contained no, or
very few, faunal survey sites. Expert opinion was therefore used to amalgamate these
combinations into a smaller number of classes for modelling. However, rather than
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creating a single amalgamated classification, the experts derived 10 different classi-
fications, each relating to a particular habitat attribute. For example, to derive a ‘tree
hollow index’ the 770 mapped combinations were amalgamated into a small number
of ordered classes based on expert knowledge of the availability of tree hollows in dif-
ferent forest types and growth stages. The other indices (e.g. nectar index, structural
complexity index) were derived by amalgamating the classes in different ways.

Integrating expert knowledge

Locational records derived from formal or ad hoc surveys are only one potential
source of information on the distribution of species. Experts familiar with the fauna
and flora of a region often possess a well-developed knowledge of species distribu-
tions and habitat requirements. This knowledge is usually acquired from many years
of opportunistic or incidental field observation and may be difficult to translate into a
discrete set of locational records. Ideally, survey data and expert knowledge should be
viewed as complementary, rather than alternative or competing, information sources.
In practice, however, the integration of expert knowledge into statistical modelling of
species distributions presents many challenges.

All of the modelling work performed in northeast NSW was conducted in close
collaboration with teams of ecologists familiar with the region’s flora and fauna.
Expert knowledge was incorporated at several stages in the development, interpre-
tation and application of statistical models (NSW NPWS 1999; Ferrier et al. 2000d;
Pearce et al. 2001b). The role played by experts in deriving habitat indices for mod-
elling faunal distributions has already been discussed above in the section on ‘in-
corporating land-cover mapping’. Initially experts were used to critically review the
biological survey datasets to identify, and where possible correct, erroneous or ano-
malous records. Experts also assisted in selecting relevant environmental predictors
to be used in modelling each biological group (e.g. understorey plants, reptiles).

Once a statistical model had been fitted to the available data for a given species,
expert input was again sought to check, interpret and, where appropriate, refine or
modify predictions from the model. Expert refinement was restricted to models for
species of special conservation concern, fitted during the Comprehensive Regional
Assessment. This refinement usually involved some form of GIS-based manipulation
to correct for over-prediction in parts of the region outside the known range of a
species, or in habitat types known to be unsuitable for the species. If the predict-
ed distribution of a species produced by statistical modelling appeared particularly
anomalous then, in some cases, an alternative GIS-based model was developed based
on expert knowledge alone – e.g. ‘species x occurs in areas of tall eucalypt forest,
with a mean annual rainfall between 1500 and 2000 mm, and a soil fertility index
greater than 3’.

Expert opinion also played a crucial role in the final stage of preparing mod-
elled species distributions for use in prioritising and selecting conservation areas in
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northeast NSW. Population viability analysis had been employed to set reservation
targets for species of special conservation concern (Environment Australia 1999).
However, these targets were usually specified in terms of some measure of total abun-
dance – e.g. number of breeding females – whereas the distributional models derived
for each species predicted only the probability, or relative likelihood, of occurrence.
Expert opinion was therefore used to convert probabilities of occurrence into densi-
ties (NSW NPWS 1999). This was achieved by first dividing the range of predicted
probabilities for each species into four classes corresponding to four levels of habitat
quality – core, intermediate, marginal and unsuitable. Each of these habitat classes
was then assigned a density or ‘carrying capacity’ – e.g. number of breeding females
per km2. This conversion, albeit approximate, enabled areas being considered for res-
ervation to be assessed in terms of their potential contribution to population viability
targets.

Evaluating performance of species modelling

In parallel with the development and application of species models in northeast NSW,
considerable effort was devoted to evaluating the performance of such modelling.
This evaluation work provided planners with important information on the level of
uncertainty associated with predictions derived from species models, and therefore
the appropriate level of precaution to be exercised when employing these predictions
in regional conservation planning and decision-making. The evaluation work also
assessed the relative performance of a wide range of alternative modelling techniques
and strategies, and therefore provided information that may inform the selection of
appropriate techniques for use in other regions. Performance of species modelling
was evaluated in terms of both: (1) the accuracy with which a model for a given
species predicts the actual distribution of that species, and (2) the effectiveness with
which species models for a given biological group (e.g. trees, birds) function as a
general surrogate for spatial pattern in biodiversity within that and other groups. The
general approach adopted in the former of these evaluations resembled that employed
in many other studies of the performance of species models (e.g. Flather and King
1992; Edwards et al. 1996; Fielding and Bell 1997; Beard et al. 1999; Elith 2000),
while the approach adopted in the latter evaluation appears to be unique.

Evaluating predictive accuracy of species models

The predictive accuracy of species models was evaluated by comparing actual ob-
servations of occurrence, at a set of surveyed sites, with predicted probabilities (or
relative likelihoods) of occurrence generated by a model. Wherever possible, models
were evaluated using independent data obtained from sites other than those used to de-
velop the model. Northeast NSW provided a good test-bed for this type of evaluation
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because of its relatively long and staged history of biological data collection. Models
developed at a given point in this history could be evaluated using data collected
during later surveys. In many cases these later surveys were purposely designed so
that sites were located well away from previously surveyed sites, thereby ensuring
spatial independence between the development and evaluation datasets. If no indepen-
dent dataset was available for a particular evaluation then statistical resampling was
applied to the development dataset to reduce bias in the assessment of performance.
This was generally achieved by jackknifing (or ‘leave one out’ cross-validation), in
which each site is withheld in turn from the development dataset, and a model is fitted
to the remaining sites. The prediction obtained from this model for the withheld site
is then compared to the actual observation for that site. This procedure is repeated for
each site, thereby producing a set of ‘independent’ predictions and observations for all
sites in the development dataset. We note, however, that for any future evaluations the
independence of predictions and observations might be better achieved by applying
cross-validation to coarser subdivisions of the dataset (e.g. 5–10 groups; T.J. Hastie,
personal communication).

The evaluation work conducted in northeast NSW was based on a conceptual
framework proposed by Murphy and Winkler (1992) for assessing predictions from
probabilistic models, and adapted for application to species modelling by Pearce and
Ferrier (2000a). This framework identifies two major components of performance:
(1) discrimination capacity – the ability of a model to correctly distinguish between
occupied and unoccupied sites, and (2) calibration – the agreement between predicted
probabilities of occurrence and observed proportions of sites occupied. The discrimi-
nation capacity of models developed for northeast NSW was assessed in terms of
the area under a relative operating characteristic (ROC) curve relating proportions of
correctly and incorrectly classified predictions over a continuous range of probability
thresholds. The calibration of models was assessed using a technique originally pro-
posed by Cox (1958) and later refined by Miller et al. (1991), in which logistic regres-
sion is used to analyse the relationship between predicted probability of occurrence
and observed proportion of sites occupied, and to quantify individual components
of calibration error. The discrimination capacity and calibration of models was also
assessed graphically using a series of three plots, as illustrated in Figure 6. A detailed
description of the overall conceptual framework, and the specific techniques used
to assess discrimination capacity and calibration, is provided by Pearce and Ferrier
(2000a).

Results of the various evaluation studies conducted using data from northeast
NSW have been reported in detail elsewhere (Ferrier and Watson 1997; Pearce and
Ferrier 2000a,b, 2001; Pearce et al. 2001a,b). Major findings of this work were: (1)
models developed for northeast NSW exhibited a reasonably high level of predictive
accuracy. When models for a representative sample of 153 species of vascular plants
and vertebrates were evaluated using independent survey data, 89% of the models
performed significantly better than random in terms of discrimination capacity, while
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Figure 6. An example (for the skink Calyptotis scutirostrum) of three diagnostic plots used to assess
the predictive accuracy of species models, employing independent data. (a) The frequency distribution
of predicted probabilities for occupied and unoccupied evaluation sites, providing an indication of dis-
crimination capacity. (b) The ROC curve depicting the relationship between false positive and true positive
fractions as the probability threshold is varied between 0 and 1, thereby providing another representation of
discrimination capacity. (c) The relationship between predicted probability of occurrence and the observed
proportion of evaluation sites occupied, for 10 0.1 probability intervals between 0 and 1, providing an
indication of model calibration.

70% achieved high levels of discrimination – i.e. an ROC area greater than 0.7
(Pearce et al. 2001a). (2) Models derived from presence/absence data performed
better than those derived from presence-only data for the same species (Ferrier and
Watson 1997). (3) Discrimination capacity exhibited a positive correlation with the
incidence of species in the dataset (i.e. the proportion of sites at which each spe-
cies was recorded) (Pearce and Ferrier 2000b). (4) Discrimination capacity was also
positively correlated with the total number of sites (presence and absence) used to
derive a model (Pearce and Ferrier 2000b). (5) Models derived using fine-scaled en-
vironmental data performed better than models derived using coarse-scaled data. (6)
In comparisons of alternative modelling techniques, logistic regression models fitted
using GAM generally out-performed those fitted using GLM (Ferrier and Watson
1997; Pearce and Ferrier 2000b), which in turn performed better on average than
decision-tree models and models based on simple profile matching (e.g. BIOCLIM)
(Ferrier and Watson 1997). (7) In a further comparison of GAM-based logistic re-
gression modelling with techniques for modelling relative abundance rather than
presence/absence (GLM- and GAM-based Poisson regression and zero-inflated nega-
tive binomial regression), predictions from the latter techniques performed no better
as a relative index of abundance than predicted probabilities of occurrence generated
by logistic regression (Pearce and Ferrier 2001). (8) The strategy used in northeast
NSW to select predictors for inclusion in species models produced models with bet-
ter discrimination capacity than models produced by alternative selection strategies
(e.g. forward–backward selection of variables) (Pearce and Ferrier 2000b). (9) The
discrimination capacity of faunal models was generally improved by incorporating
predictors describing spatial context (Pearce et al. 2001b). (10) The incorporation
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of expert opinion into statistical modelling of faunal distributions resulted in small
but statistically insignificant gains in predictive accuracy (although see Pearce et al.
(2001b) for a discussion of caveats applying to this particular study).

Evaluating species modelling as a biodiversity surrogate

The performance of species modelling in northeast NSW was also evaluated as part
of a more general research project that assessed the effectiveness with which various
forms of environmental mapping and modelling function as surrogates for spatial pat-
tern in biodiversity as a whole (Ferrier and Watson 1997). The focus here was not on
how well modelling can predict distributions of individual species of interest (i.e. fine-
filter species), but rather on how well modelling of multiple species within a biological
group might perform as a general (coarse-filter) surrogate for spatial pattern in that and
other groups. This question is of fundamental relevance to any attempt to employ spe-
cies modelling as a primary basis for regional conservation planning. By selecting con-
servation areas to maximise representation of a set of modelled species, to what extent
are we in turn maximising representation of biodiversity as a whole?

The biological and environmental datasets assembled for northeast NSW were used
to compare the performance of species modelling with a wide range of other surrogate
mapping approaches, including various types of vegetation mapping, abiotic environ-
mental classification and ordination, and canonical ordination. These surrogates were
evaluated by treating biological survey sites as candidate areas for conservation, and se-
lecting sites in the order that maximised representation of diversity within a given surro-
gate (without any reference to the actual biological survey data for those sites). The site
selected at each step was that which provided the greatest improvement in representa-
tion of diversity within the surrogate. In the case of species modelling, representation
was measured by predicting the number of modelled species occurring in at least one
of the selected sites. This number was estimated from predicted probabilities of occur-
rence for each of the modelled species using standard probability theory:

Predicted no. of species represented =
species∑
i=1


1 −

sites∏
j=1

(1 − pij )




where pij is the predicted probability of modelled species i occurring at selected
site j.

This approach to measuring representation based on modelled probabilities of
species occurrence has also been proposed independently by two more recent studies
(Polasky et al. 2000; Williams and Araújo 2000).

Once sites had been selected according to a particular surrogate, the biological
survey data for these sites were then used to assess the number of species actually
represented (i.e. included in the hypothetical set of conservation areas) after each



2300

selection. This procedure generated a species accumulation curve describing the rela-
tionship between the cumulative number of sites selected (X axis) and the cumulative
number of species represented (Y axis). A ‘species accumulation index’ was then de-
rived by scaling the area under the accumulation curve, obtained using the surrogate,
in relation to areas under two other accumulation curves (see example in Figure 7):
(1) a ‘mean random curve’ estimated by averaging a large number of individual ran-
dom curves, each derived by selecting sites in random order without reference to
either the surrogate or the biological survey data, and (2) an ‘optimum curve’ derived
by selecting sites using the actual biological survey data in place of the surrogate (i.e.
at each step selecting the site that most improved the number of species represented).
The index can range from 1 (one) for a perfect surrogate down to 0 (zero) or less for

Figure 7. An example (for reptiles) of species accumulation curves derived to evaluate the performance of
alternative biodiversity surrogates.
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a surrogate that performs no better than a random selection of sites. Bootstrapping
of the site data was used to estimate confidence limits for observed values of the
index, and to test the statistical significance of differences in performance between
surrogates. A more detailed explanation of this evaluation technique is provided by
Ferrier and Watson (1997) and Ferrier (2002).

In the northeast NSW study, surrogates were evaluated using survey data for 10
biological groups: ants, beetles, spiders, reptiles, birds, bats, rainforest canopy trees,
rainforest understorey plants, open-forest canopy trees and open-forest understorey
plants. Independence between the biological data used to derive some of the surro-
gates (including species modelling) and the data used to evaluate those surrogates was
achieved by randomly splitting the survey sites into two sets of equal size – a model-
development set and an evaluation set. The study evaluated numerous combinations
of surrogates and biological groups, and presentation of full results is therefore be-
yond the scope of this paper (interested readers should access Ferrier and Watson
1997). Selected results are summarised graphically in Figure 8. The six surrogates
for which results are presented are: (1) ‘species models (within group)’, in which
GAM was used to derive models for all species within a given biological group
(e.g. reptiles) and these models were then evaluated using actual biological survey
data for the same group; (2) ‘modelled canopy trees’, in which modelling of canopy
tree species was evaluated as a surrogate for each of the other biological groups; (3)
‘forest type mapping’, an existing fine-scaled (1:25 000) vegetation map derived from

Figure 8. A summary of the performance of six surrogate approaches, evaluated using independent survey
data for 10 biological groups in northeast NSW. SAI – Species Accumulation Index. The absence of a
bar for a given combination of surrogate and biological group indicates that this combination was not
evaluated.
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aerial photograph interpretation, and containing 130 types; (4) ‘canonical ordination
(CCA)’ (ter Braak 1986), in which biological survey data for the group of interest
was modelled in relation to environmental variables using canonical correspondence
analysis, with four axes; (5) ‘environmental domains’, in which numerical classifica-
tion was used to group sites into 125 environmental classes (domains) based purely
on abiotic environmental variables; and (6) ‘environmental ordination’ in which these
same environmental variables were used to derive a hybrid multidimensional-scaling
ordination (Belbin 1991), with four axes.

Three trends are worth noting in Figure 8. First, species modelling within each
group of interest achieved the best overall performance of the evaluated surrogates.
Second, modelling of canopy trees performed reasonably well as a surrogate for under-
storey plants and, to a lesser extent, vertebrates. Finally, the ground-dwelling arthropod
groups (ants, spiders and beetles) were, in general, not served well by any of the surro-
gate approaches, including species modelling. Possible explanations for this last result
are explored by Ferrier et al. (1999a, 2002). The overall results of the evaluation work
are also discussed further in Ferrier and Watson (1997) and Ferrier (2002).

Conclusions

Statistical modelling of species distributions has made an enormous contribution to
regional conservation planning in northeast NSW during the past 20 years, culmi-
nating in extensive additions to the region’s protected area system. Evaluation of the
predictive accuracy of a subset of models has suggested that such modelling can pro-
vide a reasonably reliable basis for planning at a regional scale. Further evaluation
has also indicated that species modelling within selected biological groups can per-
form well as a surrogate for biodiversity as a whole, compared with other surrogates
commonly employed in conservation planning. Ongoing refinement of the models for
northeast NSW is likely to be achieved by incorporating additional biological data,
and by refining the analytical methodology to better address spatial autocorrelation
and better integrate land-cover attributes derived from fine-scaled remote-sensing.

The modelling approaches developed in this study are potentially applicable
to other regions with reasonable coverage of biological and environmental data.
However, we recognise that the level of investment in data collection and analysis
in northeast NSW is unusually high relative to that for a large proportion of the
world’s regions, particularly those identified as global priorities for conservation ac-
tion. Modelling approaches developed or applied in relatively data-rich regions may
not necessarily work effectively elsewhere. There is an urgent need to adapt existing
approaches, and perhaps develop new approaches, to better cope with sparse and
biased datasets in regions encompassing high levels of diversity. These approaches
may need to further extend the capability of existing techniques to accommodate
presence-only data and to integrate expert opinion into model fitting. Relatively data-
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rich regions such as northeast NSW can play an important role in such develop-
ment by serving as test-beds for evaluating the performance of alternative modelling
approaches against independent biological datasets.

To date, most research and development work on statistical modelling of spatial
pattern in biodiversity has focused on modelling of individual species. There is now
a large literature describing, and debating the relative merits of, different statistical
techniques for modelling species distributions. While modelling of individual species
clearly has an important role to play in conservation planning, there are many situa-
tions in which this approach might be more appropriately supplemented or replaced
by modelling of higher-level biodiversity entities (e.g. communities or assemblag-
es) or collective properties of biodiversity (e.g. species richness or compositional
dissimilarity). Application of these alternative approaches needs to be supported by
research that looks beyond formulating and evaluating relatively minor variations in
statistical methodology for modelling species distributions, to focus more broadly on
formulating and evaluating other potential strategies for modelling spatial pattern in
biodiversity as a whole. The second paper of this series (Ferrier et al. 2002) describes
various such approaches to community level modelling that have been developed and
applied in northeast NSW.
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