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Abstract: On the basis of the sampling data from an assemblage, estimation of species 
richness (observed plus undetected) is statistically difficult especially for highly-diverse 
assemblages with many rare species. Simple counts of species richness in samples typically 
underestimate and strongly depend on sampling effort and sample completeness. There are 
two approaches to infer species richness and make fair comparisons among multiple 
assemblages based on possibly unequal-sampling effort and incomplete samples that miss 
many species. (1) An asymptotic approach: this approach compares the estimated asymptotes 
of species accumulation curves. It is based on statistical sampling-theory methods of estimating 
species richness. Both parametric and nonparametric methods are reviewed. We focus on the 
nonparametric estimators which are universally valid for all species abundance distributions. (2) 
A non-asymptotic approach: this approach compares the estimated species richnesses of 
standardized samples with a common finite sample size or sample completeness. It is based on 
the seamless sample-size- and coverage-based rarefaction and extrapolation sampling curves. 
This approach aims to compare species richness estimates for equally-large or equally-
complete samples. These two approaches allow researchers to efficiently use all data to make 
robust and detailed inferences about species richness. Two R packages (SpadeR and iNEXT) 
are applied to rainforest tree data for illustration.  
 

 

Species richness (i.e., the number of species) is the simplest, most intuitive and 
most frequently used measure for characterizing the diversity of an assemblage 
(see Diversity measures). Species richness possesses intuitive mathematical 
properties, and features prominently in foundational models of community 
ecology. In biogeographic studies, species range maps and local and regional 
floras and faunas generally provide only species presence-absence information for 
each locality. For these studies, species richness thus becomes the only measure 
that can be used to quantify diversity. Even when species abundances are available, 
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in conservation analyses the actual species count in an area is often the most 
relevant diversity measure. In this article, we focus on the estimation and 
comparison of species richness based on sampling data from each of the focal 
assemblages. The topic is important for understanding the causes and processes of 
biodiversity, for assessing the effects of human disturbance on biodiversity, and 
for making environmental policy decisions. See Refs 1–7 for a background and 
developments and applications on this topic.  

In nearly all biodiversity studies, however, the compilation of complete 
species census and inventories often requires extraordinary efforts and is an almost 
unattainable goal in practical applications. There are undiscovered species in 
almost every taxonomic survey or species inventory. Consequently, the simple 
count of species (empirical or observed richness) in a sample underestimates the 
true species richness (observed plus undetected), with the magnitude of the 
negative bias possibly substantial. In addition, empirical richness strongly depends 
on sampling effort and thus also depends on sample completeness. Generally, 
there are two approaches (an asymptotic approach via species richness estimation 
and a non-asymptotic approach via rarefaction and extrapolation) to infer species 
richness and make fair comparisons among multiple assemblages based on 
possibly unequal-sampling effort and incomplete samples that miss many species. 

First, the asymptotic approach aims to estimate the asymptote of a species 
accumulation curve. Then the estimated asymptote is used as a species richness 
estimate which can be compared across assemblages. This approach is based on 
statistical sampling-theory methods of estimating species richness. Both 
parametric and nonparametric sampling-theory-based estimation methods are 
reviewed. We focus on the nonparametric estimators which are universally valid 
for all species abundance distributions.  

Species richness estimation based on sampling data has a long history in 
various disciplines. In general contexts, “species” can be defined in a broad sense: 
they may be biological species, individuals of a target population, patients/cases in 
epidemiology and medical sciences, bugs in software programs, words in a book, 
genes or alleles in genetic code, or other discrete entities. Thus, the topic of 
species richness estimation and comparison has had a wide range of applications 
not only in biological sciences but also in many other disciplines. This cross-
discipline topic has been extensively discussed in the literature[1,5,7].  

We briefly review in Section 2 the traditional non-sampling-based methods 
and their drawbacks. The 1943 paper by Fisher, Corbet and Williams[8] provided 
the mathematical foundation on statistical sampling approaches to estimate species 
richness. Since then, an enormous number of models and methods based on 
statistical sampling theory have been proposed in the literature to estimate species 
richness. In general, there are two frameworks: parametric and nonparametric. 
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Their relative merits and all details are reviewed in Section 2 after an introduction 
of two types of data (abundance data and incidence data) is presented.  

Second, the non-asymptotic approach aims to compare species richness 
estimates for equally-large or equally-complete samples. It compares the estimated 
species richness of standardized samples with a common finite sample size or 
sample completeness (as measured by sample coverage; see later text for details). 
The earliest development of standardizing sample size for abundance data by 
rarefaction was proposed in a series of papers by Sanders and his followers[9-13], 
but see Chiarucci et al.[14] for a historical review. Ecologists typically use 
rarefaction to down-sample the larger samples until they are the same size as the 
smallest sample, and then compare the richnesses of these equally-large samples, 
but this implies that some data from the larger samples are thrown away. To avoid 
discarding data, Colwell et al.[15] proposed using a sample-size-based rarefaction 
(interpolation) and extrapolation (prediction) sampling curve that can be rarefied 
to smaller sample sizes or extrapolated to larger sample sizes. Chao and Jost[16]   
proposed standardizing samples by a given degree of sample completeness rather 
than size. The authors developed a coverage-based rarefaction and extrapolation 
methodology.  

We review in Section 3 the sample-size- and coverage-based integration of 
rarefaction and extrapolation sampling curves of species richness. These two types 
of rarefaction and extrapolation represent a unified standardization method for 
quantifying and comparing species richness across multiple assemblages. When 
the sample is nearly complete (i.e., sample size is sufficiently large and sample 
completeness approaches be unity), the estimates of the non-asymptotic approach 
tend to those in the corresponding asymptotic approach.  

In Section 4, we use real data to demonstrate the application of the R 
package SpadeR (Species-richness Prediction And Diversity Estimation in R) to 
obtain nonparametric species richness estimates. We also illustrate the use of the R 
package iNEXT (iNterpolation/EXTrapolation) to obtain the sample-size- and 
coverage-based integrated rarefaction and extrapolation sampling curves. These 
methods allow researchers to efficiently use all available data to make more robust 
and detailed inferences about species richness of the sampled assemblages, and 
also to make objective comparisons of species richness across assemblages. 

1 Two Types of Data 
We generally follow the notation and terminology used in Colwell et al.[15] and Chao et 
al.[17] Consider an assemblage consisting of N total individuals, each belonging to 
one of S distinct species. Let Ni (true species absolute abundance) be the number 
of individuals of the ith species in the assemblage, i = 1, 2, …, S, Ni > 0, and 
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  S
i iNN 1  be the total population size. The relative abundance of species i is pi = 

Ni/N, so that   S
i ip1 1 . Here N, S, Ni, and pi represent the true but unknown 

underlying parameters of the assemblage. We distinguish between two sampling 
data structures. 

1.1 Abundance Data 

In many biological studies (e.g., bird, insect, mammal and plant), it is often the 
case that one individual is observed or encountered at a time and classified as to its 
species identity. Assume that a random sample of n individuals is taken from the 
assemblage and a total of Sobs species are observed. This observed sample is 
referred to as a reference sample. This type of data can be obtained by two 
different sampling schemes. (i) Discrete-type sampling in which the sampling unit 
is an individual. For example, we sample a fixed number of n individuals in a 
study area. Here sample size n is fixed by design and each species can be 
represented by at most n individuals. (ii) Continuous-type sampling in which 
sampling efforts are measured in a continuous scale such as time, area or water 
volume. For example, we sample a fixed area or a fixed amount of time in a study 
site. Here the number of observed individuals in this sampling protocol is a 
random variable and each species can be represented by many individuals without 
a limit.  

Let Xi (sample species frequency) be the number of individuals of the ith 
species which are observed in the sample, i = 1, 2, …, S. Only those species with 
Xi > 0 are observable in the sample, and   S

i i nX1 . Let fk (abundance frequency 
counts), k = 0, 1, ..., n, be the number of species represented by exactly k 
individuals in the reference sample. Thus, we have   S

i iXn 1 = 1k kkf , and 

  1k kobs fS . In particular, f1 is the number of species represented by exactly one 
individual (singletons) in the reference sample, and f2 is the number of species 
represented by exactly two individuals (doubletons). Also, f0 denotes the number 
of undetected species in the reference sample. Here “undetected species” means 
species that are present in the assemblage of N individuals and S species, but were 
not detected in the reference sample of n individuals and Sobs species. Because S = 
Sobs + f0, species richness estimation is equivalent to the inference about the 
number of undetected species f0.  

1.2 Incidence Data 

In some surveys, the sampling unit is a trap, net, quadrat, plot, or timed survey. It 
is these sampling units, and not the individual organisms, that are actually sampled 
randomly and independently. Quadrat sampling provides an example in which the 
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study area is divided into a number of quadrats with approximately the same area, 
and a sample of quadrats is randomly selected for survey. There are other 
variations: similar sampling is conducted by several investigators, or trapping 
records are collected over multiple occasions. Counting the exact number of 
individuals for each species appearing within each sampling unit may often 
become impossible for micro-organisms, invertebrates or plants. In most cases, 
only their incidence (detection or non-detection) can be recorded. Estimation is 
based on a set of sampling units in which the incidence of each species is recorded 
in each sampling unit instead of its abundance. We use the general term sampling 
unit in what follows to refer to a quadrat, occasion, site, transect line, team, 
occasion,  fixed period of time, fixed number of traps, investigator, and so on.  

The reference sample for incidence data consists of a set of T sampling units. 
The detection or non-detection of each species within each sampling unit is 
recorded, to form a species-by-sampling-unit incidence matrix [Wij] with S rows 
and T columns. The value of the element Wij of this matrix is unity if species i is 
detected in the jth sampling unit, and zero if it is not detected. The row sum of the 
incidence matrix   T

j iji WY 1  denotes the incidence-based frequency of species i, 

for i = 1 to S. Here, Yi is analogous to Xi in the individual-based frequency vector. 
Species present in the assemblage but not detected in any sampling unit have Yi = 
0. The total number of species observed in the reference sample is Sobs (only 
species with Yi > 0 contribute to Sobs).  

For most applications, the sufficient statistics from the incidence matrix are 
the incidence-based frequency counts ),...,,( 21 TQQQ , where Qk denotes the number 
of species that are detected in exactly k sampling units, k = 0, 1, …, T. That is, Qk 
is the number of species each represented exactly Yi = k times in the incidence 
matrix sample. Here Q1 represents the number of “unique” species (those that are 
each detected in only one sampling unit) and Q2 represents the number of 
“duplicate” species (those that are each detected in exactly two sampling units). 
The zero frequency count Q0 denotes the number of species among the S species in 
the assemblage that are not detected in any of the T sampling units. Let U be the 
total number of incidences in the matrix. We have U=    S

i i
T
k k YkQ 11 . Since S = 

Sobs + Q0, species richness estimation is equivalent to the inference about the 
number of undetected species Q0.  

2 Asymptotic Approach: Species 
Richness Estimation 
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The earliest attempts to study communities started with finding the relationship 
between species richness and the area that the survey covered. A classic species-
area or species accumulation curve (or collector’s curve, species-cover curve) is a 
plot of the accumulated number of species found with respect to the number of 
units of effort expended. The effort may correspond to either a continuous type 
(area, trap-time, volumes) or a discrete-type (such as individuals, sampling 
occasions, quadrats, number of nets). This curve, as a function of effort, 
monotonically increases and typically approaches an asymptote, which is the total 
number of species. An asymptotic approach refers to the estimation of the 
asymptote of a species accumulation curve.  

The traditional curve-fitting approach uses parametric curves to fit a species-
accumulation or species-area curve to predict its asymptote, which is used as an 
estimate of species richness. Among the proposed asymptotic functions are the 
negative exponential function, the Weibull function, the logistic function, and the 
Michaelis-Menten equation[1,18]. Although intuitive, this approach does not 
directly use information on the frequencies of common and rare species, but rather 
only uses presence data to forecast the shape and asymptote of the rising curve.  

Another type of curve-fitting approach involves fitting a parametric species 
abundance distribution or functional form to the observed species frequencies to 
obtain an estimate of species richness. The earliest such approach was proposed by 
Preston[19], who fitted a log-normal curve to the (properly grouped) observed 
frequencies in order to estimate the portion of the assemblage below a lower limit 
of observed abundance that he called the “veil line.” Then the integrated value of 
the fitted curve over the real line can be used as an estimate of species richness. 
Other zero-truncated distributions (e.g., negative binomial, geometric, Zipf-
Mandelbrot, logarithmic) can also be applied[2]. Although this approach uses 
information on the frequencies of common and rare species, it simply fits a curve 
to the observed frequency data.  

A major problem with the curve-fitting approaches is that they are not based 
on any statistical sampling model, so the variances of the resulting asymptotes 
cannot be evaluated without imposing further assumptions. Thus, rigorous and 
statistical comparisons of estimators among assemblages cannot be made. Another 
problem is that several different functional forms may fit the same data set equally 
well, yet yield drastically different estimates of the asymptote, implying 
theoretical difficulties for the selection of a proper distribution or functional form. 
Therefore, we mainly focus on the sampling-theory-based methodologies which 
are presented below separately for abundance data and incidence data.  

 

2.1 Species Richness Estimation for Abundance Data 
We first discuss the discrete-type sampling in which the sampling unit is an 
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individual; see Section 1.1 for notation and terminology. Suppose n individuals 
(with n fixed in advance) are independently observed from the study site. A 
commonly used model is the multinomial model. That is, the observed species 
frequencies ),...,,( 21 SXXX  for given S and the relative abundances ),...,,( 21 Sppp  
follow a multinomial distribution: 

Sx
S

xx

S
SS p pp

x x

n
xXxXP ...

!!...

!
),...,( 21

21
1

11  . (1a) 

Here the species detection probability for the ith species is simply its relative 
abundance. All our inference procedures are derived from the following marginal 
distribution of the sample frequency Xi: 

ii xn
i

X
i

i
ii pp

x

n
xXP 








 )1()( . (1b) 

A more general model allows the detectability of individuals to vary with 
species. The detectability of individuals is determined by many possible factors 
such as individual movement patterns, color, size, and vocalizations. This general 
model assumes that the detectability of any individual of the ith species is θi > 0, 
which varies with species. It also assumes that the species detection probability of 
the ith species is proportional to the product of this species abundance Ni and the 
detectability θi of any individual of the same species. Under this general model, 
the species detection probability for the ith species in any observation becomes 

   S

k kkii

S

k kkiii ppNN
11

//  , i = 1, 2, …, S. Thus, a more general setting is 

the following model that allows for heterogeneous individual detectability: 

Sx
S

xx

S
SS  

x x

n
xXxXP  ...

!!...

!
),...,( 21

21
1

11  . (1c) 

where the detection probability ψi is the normalized product of species abundance 
and individual detectability. Under the special case that all individuals have the 
same detectability, model (1c) reduces to model (1a). The two models, (1a) and 
(1c), are identical in structure, implying that the two models are equivalent in the 
sense that all inference procedures are the same.  

In discrete-type sampling, it is assumed that the sampling procedure itself 
does not substantially alter the species detection probabilities ),...,,( 21 S . This 
assumption is fulfilled if individuals are sampled with replacement so that any 
individual can be repeatedly observed. If sampling is done without replacement, 
meaning that any individual can only be observed at most once in the sample, then 
a hypergeometric model is more appropriate as will be discussed in Section 2.1.2. 
In practice the two probability models differ little when the biological populations 
being sampled are sufficiently large and sample size is small relative to population 
size.   

Next, consider the continuous-type sampling scheme. Assume that the 
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assemblage is surveyed through continuous-type sampling efforts and that the total 
amount of efforts is increased from 0 to A units. Since the number of observed 
individuals of any species has no upper limit, a common approach is based on the 
Poisson model which can take values from 0 to infinity. This approach can be 
traced back to Fisher et al.[8], who assumed that individuals of the ith species 
arrive in a sample according to a Poisson process with mean species occurrence or 
detection rate Aλi, where λi represents the mean rate per unit of effort.  

In some continuous-time sampling data, the exact arrival times for each 
individual are available, but in most biological surveys, only the frequencies of 
discovered species are recorded, and these frequencies would be sufficient for 
estimating species richness. In this sampling scheme, the sample size n (the 
number of individuals observed in the experiment) is a random variable and n can 
be any positive integer. The probability distribution for the observed frequencies is 
a product-Poisson distribution: 

   
!

exp
)(,...,

1
11

i

i
S

i

x
iSS x

A
AxXxXP i

 
 


. (2) 

Although n is a random variable, we can consider the conditional distribution of 
the frequencies ),...,,( 21 SXXX  given n = 

S
k kX1 . The conditional distribution is a 

multinomial distribution with cell total n and cell probabilities  
S
k ki 1/  , i = 1, 

2, …, S. In other words, inference under a multinomial model can be regarded as a 
conditional procedure under a product-Poisson model. If we assume that the 
Poisson rate λi is proportional to the product of species abundance Ni and 
individual detectability θi, then this conditional multinomial distribution is 
identical to the model given in Equation (1c). This is also the reason that many 
estimators are shared by both the product-Poisson model under continuous-effort 
sampling schemes and a multinomial model under discrete-effort sampling 
schemes.  

Coleman’s area-based model[20] is basically a special case of the product-
Poisson model. Coleman considered that the observed sample is obtained by a 
survey in a specified site of area A. Within this site, the ith species occurs at a 
species-specific mean rate iA  and the probability distribution is the same as that 
given in Equation (2).  

2.1.1 Parametric Models 

Fisher et al.[8] adopted a parametric approach in their pioneering work on species 
richness estimation. In this approach, one assumes a parametric 
distribution );( f , where θ denotes a vector of parameters for the species 
detection rates ),,...,( 21 S  in the product-Poisson model (2) or for the species 
(relative) abundances in the multinomial model. Most parametric approaches are 
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based on the product-Poisson model under a continuous-type sampling-effort 
framework. When S is large, the large number of parameters ),,...,( 21 S makes 
inference problems statistically difficult to deal with. Assuming a parametric 
distribution for ),,...,( 21 S , we see that the whole inference problem is reduced 

to the estimation of S and  , so that conventional inference procedures can be 
applied. This is a major advantage of parametric models.   

If the distribution );( f  is a degenerate distribution with all probabilities at 

a fixed point λ, then this reduces to a homogeneous model (i.e., equal detection 
rates for all species) with   S...21

. Although this homogeneous model 

is rarely valid in practice, it provides a starting framework for species richness 
estimation and has been discussed extensively in the literature[3]. An approximate 
maximum likelihood estimator (MLE) under the homogeneous model is the 
solution Ŝ  of the following equation:  

                          )]ˆ/exp(1[ˆ SnSSobs  , (3) 

with an asymptotic variance estimator for the solution Ŝ  

                  ]1)ˆ/()ˆ//[exp(ˆ)ˆr(âv  SnSnSS .  

To formulate the parametric theory under a general distribution );( f , we 
first construct the likelihood function of S and   based on both observed and 
undetected species. For any mixing density );( f , define )(kp , k = 0, 1, ... as 
the probability that any species is observed k times in the sample. Then from 
Equation (2) we have 

 ,);(
!

)exp(
)()(

0

 




 df
k

A
Akp k  k = 0, 1, .... (4) 

and )()( kpSfE k  . Consider that each species can be classified into any of the 
following disjoint categories: undetected, detected once, detected twice, ….etc. 
Then the likelihood function for S and θ from all species can be written as  

  






11

)()]0([
!)!(

!
),(

k

fSS

k kobs

kobs kpp
fSS

S
SL  . (5a) 

On the basis of the above likelihood, species richness estimation thus reduces to an 
inference with parameters S and θ, and traditional estimation procedures can be 
applied. For example, the unconditional maximum likelihood estimator (UMLE) 
and its asymptotic variance are obtained based on the above full likelihood (5a). A 
conditional (on Sobs) maximum likelihood estimator (CMLE) is often more 
convenient to obtain as follows.  

Note that likelihood (5a) can be factored as )(),(),(  cb LSLSL  , where 
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and 
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
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
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


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f
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
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Here ),( SLb  is a likelihood for a binomial (S, )0(1 p ), which is the distribution 

of Sobs; )(cL  is a multinomial likelihood with respect to }1;{ kfk  with cell total 

Sobs and zero-truncated cell probabilities )]0(1/[)(  pkp  , .1k  The first 

likelihood ),( SLb  results in the CMLE[21] )]0(1/[ˆ
̂

pSS obsCMLE  , where ̂  

maximizes the second likelihood )(cL . Both types of MLE’s can also be regarded 
as empirical Bayes estimators if we think of the mixing distribution as a prior 
having unknown parameters that must be estimated.  Extensive iterative 
procedures are often required to find the UMLE and CMLE, and in some cases the 
iterative steps fail to converge properly and thus the UMLE or CMLE may not be 
obtainable. 

Fisher et al.[8] adopted a two-parameter gamma distribution with ),(    
and density ),;( f = )(/)/exp(1    , i.e., the gamma-Poisson or 
gamma-mixed Poisson model. Since the squared coefficient of variation of this 
gamma distribution is 1/τ, the parameter τ measures inversely the degree of 
heterogeneity among species detection rates. The )(kp , or equivalently E(fk), k = 0, 
1, 2, ..., correspond to individual terms of a negative-binomial distribution. 

  
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



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


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





1

1

1)()1(
)()( ,

k

k

k
kpkp , k = 0, 1, … 

In the special case of τ =1 (i.e., );( f  is an exponential distribution), the model is 
equivalent to a broken-stick model[22]. In this case, the )(kp , k = 0, 1, 2, ..., 
correspond to the terms of a geometric distribution.  

Fisher et al.[8] considered the extreme case in which τ tends to 0, i.e., the 
degree of heterogeneity among species detection rates tends to infinity. In this 
extreme case, )]}1log([/{)( xkxkp k  , where )1/(  x . This implies the 

well-known Fisher’s log-series model: kxkpSfE k
k /)()(   , where 

)]1log(/[ xS  . However, this model does not yield an estimate of species 
richness[22]. On the basis of the sampling data, Fisher’s α and the parameter x in 
the log-series model are simply solved from the two equations in terms of  sample 
size and observed numbers of species: )1log( xSobs    and )1/( xxn  . Thus, 
two data sets with the same sample size and observed numbers of species would 
result in the same value of Fisher’s α. Fisher’s α completely ignores the sample 
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species frequencies, although it has been used as a diversity measure in the 
literature.                                                                                                                                                 

Other parametric models for );( f  include the log-normal[23], inverse-
Gaussian[24], and generalized inverse-Gaussian[25]. The chief weakness of these 
methods is that simulations show that they work well only when the correct form 
of the species detection rates is already known[26], but this is rarely the case for 
empirical data.  

One can also assume a parametric distribution for the species relative 
abundances ),,...,( 21 Sppp in the multinomial model (1a) to characterize the 
theoretical patterns. The most popular functional forms include the geometric 

1)1(  i
ip   and the Zipf-Mandelbrot law   )(ipi , where α and θ are 

parameters. Although these types of models can produce species richness 
estimates[7], they are mainly useful for describing the features of abundant species, 
especially for applications in linguistics. Moreover, simulation studies have shown 
that the estimators derived from these models do not perform satisfactorily[27].  

A difficulty shared by the curve-fitting and parametric approaches lies in the 
selection of a parametric function or distribution; two models with different 
parametric functions or distributions may fit the data equally well, but they yield 
widely different estimates. In addition, these approaches do not perform well in 
comparisons with empirical or simulated data sets[5,6,13]. Most importantly, when 
there are multiple assemblages, the parametric approach does not permit 
meaningful comparisons of assemblages with different distribution functions. For 
example, a log-normal assemblage cannot be compared to an assemblage whose 
species-rank distribution follows a geometric series. A practical problem, as noted 
earlier for obtaining CMLE and UMLE, is that in some cases the iterative steps 
fail to converge properly and thus, species richness estimates may not be 
obtainable. A related issue is that it is almost impossible to generalize the 
parametric approach to incorporate species’ evolutionary histories or functional 
differences among species based on species traits[28]. 

2.1.2 Non-parametric Models 

The non-parametric approach, which makes no assumptions about the 
mathematical form of the underlying distributions of species abundance or species 
detection rates, avoids the above-mentioned drawbacks and is more robust in 
applications. In the following, we review three types of analytic nonparametric 
estimators which are universally valid for all species abundance distributions and 
allow for comparison among multiple assemblages. An intuitive and basic concept 
in non-parametric species richness estimation is that abundant species (which are 
certain to be detected in samples) contain almost no information about the 
undetected species richness, whereas rare species (which are likely to be either 
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undetected or infrequently detected) contain almost all the information about the 
undetected species richness. Therefore, most nonparametric estimators of the 
number of undetected species are based on the lower-order frequency counts, 
especially the numbers of singletons and doubletons for abundance data.  

Chao1-type estimators 

When there are many undetectable or “invisible” species in a highly-diverse 
assemblage, it is statistically impossible to obtain a good estimate of species 
richness. Therefore, an accurate lower bound for species richness is often of more 
practical use than an imprecise point estimate. Chao[29,30] derived a lower bound of 
undetected species richness in terms of the numbers of singletons and doubletons; 
the corresponding lower bound of species richness given below is referred to as 
the Chao1 estimator[1]: 
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The above estimator is valid under both the multinomial and product-Poisson 
models discussed in Section 2.1. A simple analytic variance estimator (if f2 > 0)[30] 

is: 
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where k = 1–1/n. If f2 = 0, the above variance formula is modified to: 
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A confidence interval of species richness based on the Chao1 estimator can 
be constructed using an asymptotic variance and a log-transformation[30,31] so that 
the lower bound of the interval is not less than Sobs. In the special case of 
homogeneous case (i.e., all species detection probabilities or rates are equal), a 
bias-corrected estimator (referred to as Chao1-bc estimator) is 

)].1(2/[)1(]/)1[(ˆ
2111  fffnnSS obsbcChao

 
(6b) 

Although the Chao1 estimator is derived as a lower bound of species richness, 
it generally works satisfactorily as a point estimator when an undetected species in 
the sample has approximately the same chance of being detected as a singleton[32]. 
This condition is satisfied if the sample size is very large or the rare species are 
nearly homogeneous in terms of detection probabilities; in the latter case, other 
species could be highly heterogeneous.  
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An improved lower bound, which makes use of the additional information of 
tripletons and quadrupletons to estimate undetected species richness, was recently 
derived by Chiu et al.[33] The corresponding lower bound of species richness is 
referred to as iChao1 estimator (here the sub-index i stands for “improved”):  
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They also provided an analytic variance estimator to construct the associated 
confidence intervals.  

    Chao and Lin[34] extended the Chao1 estimator to deal with data based on 
sampling without replacement, i.e., sampling units cannot be repeatedly observed. 
The model in Equation (1a) is thus modified to the following generalized 
hypergeometric distribution with population size N, 
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The Chao1 estimator under this model is generalized to   
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where the subscript “wor” refers to “without replacement”, and q = n/N denotes 
the known sampling ratio (the ratio of sample size to the population size or the 
proportion of sampled area). When only a small portion of individuals are taken 
from the entire universe of N individuals in the assemblage, so that the sample 
fraction q approaches zero, the lower bound approaches the Chao1 estimator. On 
the other hand, when all individuals are observed, so that q approaches 1, )1/( qq   
approaches infinity and our lower bound reduces to the number of observed 
species, which equals the true parameter in this special case. 

Coverage-based estimators (ACE-type estimators)  

The ACE (Abundance-based Coverage Estimator) of species richness is based on 
the concept of “sample coverage” (or simply “coverage”), which was originally 
developed for cryptographic analyses during World War II by the founder of 
modern computer science, Alan Turing, and his colleague I. J. Good[35,36,37]. Under 
Model (1a), the coverage of a sample is interpreted as the proportion of the total 
number of individuals in an assemblage that belong to the species represented in 
the sample. Mathematically, for an observed sample of size n with species 
frequencies (X1, X2, …, XS), the sample coverage can be expressed as 
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   S

i ii XIpC
1

)0( , where I(A) is the indicator function, i.e., I(A) = 1 if the event 

A occurs, and 0 otherwise. See Section 3.1.2 for more details.  

Sample coverage is an objective measure of the degree of sample 
completeness and can be very accurately and efficiently estimated using only 
information contained in the reference sample itself, as long as the sample size is 
reasonably large, as shown by Turing [36,37]. His estimator is surprisingly elegantly 
simple: it is just the complement of the proportion of singletons. Turing’s sample 
coverage estimator is very efficient[38] and has found wide applications in various 
research fields. Chao and Lee[39] applied it to develop the ACE approach. See 
Chao and Jost[16] for a review on other applications. 

The ACE model assumes that the species relative abundances (p1, p2, …, pS) 
are fully characterized by their mean Sp /1  and CV (coefficient of variation), 

where the squared CV, 2 , is defined as 22
1

12 /])([ pppS S
i i 

  . The CV 
parameter is used to characterize the degree of heterogeneity among species 
abundances. The larger the CV is, the greater will be the degree of heterogeneity. 
The CV vanishes if and only if all species have the same abundances (i.e., the 
assemblage is homogeneous).  

To apply the concept of sample coverage to species richness estimation, a 
cut-off value κ is needed to separate species frequencies into “rare” (frequency ≤ κ) 
and “abundant” (frequency > κ) groups. The cut-off κ =10 works well for many 
empirical data sets. For highly heterogeneous communities such as bacterial or 
microbial sequencing data, an alternative choice is κ = max (10, n/Sobs)

[5]. The 
reason for a cut-off point is that abundant species carry almost no information 
about undetected species. In addition, the parameter CV is statistically hard to 
estimate when there are very abundant species; restriction to the rare species group 
helps reduce the magnitude of CV so that a more accurate estimate of the CV can 
be obtained.  

Let the total number of observed species in the abundant species group 
be   i iabun fS  and the number of observed species in the rare species group be 

  
1i irare fS . Because detected rare species contain nearly all the information 

about the undetected species, the ACE approach estimates the number of 
undetected species using information from the rare species group. Let raren  = 

 


1i iif  be the sample size for the rare species group. Turing’s coverage estimate 

for this group is 1ˆ
rareC rarenf /1 , which measures the sample completeness of the 

subsample restricted to rare species. In the special case of homogeneous 
abundances for rare species (CV = 0), the coverage-based estimator[40] is: 
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The basic idea of the ACE[3,39] is to adjust the estimator in (7a) by accounting for 
heterogeneity. The resulting ACE is expressed as 
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where 2ˆrare  is the square of the estimated CV, 
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For species-rich and highly heterogeneous assemblages (e.g., species richness > 
1000 and estimated CV for the whole data > 2), the estimator 

rare̂  in Equation (7c)  

and the resulting ACE generally underestimate. In such cases, a modified 
estimator, ACE-1, was derived[39]. An approximate variance for the ACE and 
ACE-1 can be obtained using standard statistical approximation theory.  

Jackknife estimators 

Jackknife techniques were developed as a general method to reduce the bias of a 
biased estimator. Here the biased estimator is the number of species observed in 
the sample. The basic idea behind the j-th order jackknife method is to consider 
sub-data by successively deleting j individuals from the data. Despite the fact that 
Cormack[41] implied the jackknife method does not have a theoretical basis for bias 
reduction of species richness estimation, the first two orders of jackknife 
estimators are widely used in various fields. The first-order jackknife is expressed 
as 
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This estimator implies that the number of undetected species is approximately the 
same as the number of singletons. The second-order jackknife estimator has the 
form: 
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This estimator implies that the number of undetected species is approximately the 
same as the difference between 2f1 and f2. Higher-order jackknife estimators are 
available. All estimators can be expressed as linear combinations of frequencies 
and thus variances and confidence intervals can be obtained[42,43].  

Extensive simulations conducted by Chiu et al.[33] based on various species 
abundance models revealed that the two jackknife estimators typically 
underestimate when the sample size is relatively small, but exceed the true species 
richness and overestimate at larger sample sizes. Thus, there is a limited range of 
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sample sizes (near crossing points) where jackknife estimators are close to the true 
species richness. This is likely the reason why many studies found the jackknife 
estimators to have a relatively good performance. However, the theoretical 
behaviour is not predictable because the narrow range of good performance 
changes with each model. Outside this range, the two jackknife estimators may 
have appreciable biases. The jackknife estimators often exhibit counter-intuitive 
patterns: their bias, accuracy and coverage probability regularly do not improve as 
sample size increases, whereas the other non-parametric estimators presented in 
this section always improve.  

 

2.2 Species Richness Estimation for Incidence Data 
As indicated in Section 1.2, the reference sample for incidence data consists of a 
species-by-sampling-unit incidence matrix [Wij]. Each element in the matrix 
corresponds to either detection or non-detection of a species. Most statistical 
estimation methods reviewed below for incidence data were originally developed 
for estimating population sizes in the context of capture-recapture research. In 
typical capture-recapture experiments, data consist of an individual-by-trapping-
sample matrix with the elements of the matrix corresponding to either the capture 
or non-capture of an individual. Thus, there is a simple analogy between the 
incidence data in species richness estimation for a multiple-species assemblage 
and the capture-recapture data in population size estimation for a single species. 
An “individual” animal in capture-recapture studies corresponds to a “species” in 
species richness estimation. The estimating target in the former is population size 
whereas in the latter it is species richness. Consequently, the estimation techniques 
in the capture-recapture models can be directly applied to estimate species 
richness. The major difference is that in population studies individuals are often 
not distinguishable from each other, thus animals are often captured and tagged or 
marked in order to have individual capture records, while in species richness 
estimation, species are easily classified from sighting. See Refs 44–46 for 
comprehensive reviews of methodology and applications, and see Refs 47–49 for 
short overviews specifically on population size estimation.   

Following Colwell et al.[15], we adopt a product-Bernoulli model, which 
assumes that the ith species has its own unique detection or incidence probability 
πi that is constant for any randomly selected sampling unit. The incidence 
probability πi is the probability that species i is detected in a sampling unit. This 
model, in the context of capture-recapture research, is referred to as Model Mh, 
where the sub-index “h” denotes heterogeneity among individual capture 
probabilities[47]. Under the product-Bernoulli model, each element Wij in the 
incidence matrix is a Bernoulli random variable with probability i  that Wij=1 and 
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probability i1  that Wij=0. The probability distribution for the incidence matrix 
can be expressed as 
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The marginal distribution for the incidence-based frequency Yi for the i-th species follows 
a binomial distribution:  
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Because of the resemblance between Models (1b) and (9b), the inference 
procedures for abundance and incidence data are generally parallel: the incidence-
based frequency Yi, the incidence probability πi, and the number of sampling units 
T are analogous respectively to Xi, pi and sample size n in the abundance data. As 
a result, the incidence-based frequencies counts (Q1, Q2, …, QT) are analogous to 
the frequency counts (f1, f2, …, fn) in the abundance data. 

A more general capture-recapture model is called Model Mht where the sub-
index “h” denotes heterogeneity among individual capture probabilities and the 
sub-index “t” denotes time-varying effects[47]. Model Mht can also be adapted to 
estimate species richness for incidence data; it assumes that the detection 
probability of the i-th species in the j-th sampling unit is the product of the 
“heterogeneity” effect πi and the sampling-unit effect vj. Here, as in Model Mh, 
the heterogeneity effect means that each species has its own unique incidence rate 
πi; the sampling unit effect vj is closely related to some known and unknown 
factors for the j-th sampling unit, possible examples of which include sampling 
method/efforts, quadrat area, weather variability, sampler’s capability and other 
environmental variables associated with each sampling occasion.  

Since there are many factors that may be involved in the sampling-unit 
effects, the effects },...,,{ 21 Tvvv  are usually modeled as random variables taken 
from an unknown probability density function h(v). For given sampling-unit 
effects },...,,{ 21 Tvvv , the probability distribution of the incidence matrix is an 
extension of Equation (9a):  
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Integrating out all possible values of },...,,{ 21 Tvvv , we obtain the following 
binomial model for the incidence-based frequency Yi:  
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where  dvvvhii )( . That is, the frequency Yi under Model Mht is a binomial 

random variable with detection probability μi. When there are no sampling-unit 
effects such that sample effects can be assumed to be identical to unity (e.g., 
equal-size quadrats, equal-effort sampling with similar protocols), Model Mht 
reduces to Model Mh. Note that the distributions in Models (9b) and (10b) are 
identical in structure, implying that the two models are equivalent in the sense 
that all inference procedures are the same. Without loss of generality, we only 
consider Model Mh and all estimators reviewed in the following two sections all 
based on the distribution given in Equation (9b).  

 

2.2.1 Parametric Models 

 A commonly used parametric approach is the beta-binomial model, where the 
detection rate πi in model (9b) is assumed to be a random sample from a beta 
distribution[43,50]. The likelihood is similar to that in Equation (4) with Pθ(k) 
replaced by a beta-binomial form. Therefore, the maximum likelihood or empirical 
Bayes estimation procedures can be similarly obtained. Then, based on Equations 
(5a) and (5b), the UMLE and CMLE can be obtained and all estimation 
procedures are similar to those discussed for the abundance data. Numerical 
iterations are required to obtain estimates, which may not be obtainable due to 
failure of convergences.  
 

There are alternative parametric assumptions. Instead of using a 
multiplicative of heterogeneity effect πi and sampling-unit effect vj as in Model 
Mht, Huggins[51] proposed a logistic model which can be expressed as πivj /(1+πivj); 
this is also known as the Rasch model in educational statistics. There are several 
approaches to this model including the log-linear approach, mixture models and 
latent class models[47]. The relevant covariates or auxiliary variables can be easily 
incorporated to explain heterogeneity effects in analysis.  

As with the parametric models for abundance data, these approaches work 
well only when the specified parametric models are the true models. When this is 
in fact the case, standard inference estimation procedures involving numerical 
iterations can be applied to obtain species richness estimates and the associated 
confidence intervals. For example, in the latent class model, it works well only 
when the studied population actually contains groups of individuals that are 
thought to have different detection rates. However, such an assumption is not 
directly testable based on empirical data. Other advantage and drawbacks for the 
above parametric models are similar to those discussed for abundance data in 
Section 2.1.1.  
 

2.2.2 Non-parametric Models 
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As with the abundance model, a major advantage of the non-parametric models is 
that they are valid for all types of distributions for the detection rates },...,,{ 21 S  
in model (9b). Corresponding to the Chao1-type and the ACE-type, we have for 
incidence data the Chao2-type and ICE-type. The estimation procedures are 
generally parallel simply by replacing the sample size n and the capture frequency 
counts (f1, f2, …, fn) in abundance data with the number of trapping samples T and 
the incidence-based frequency counts (Q1, Q2, …, QT), respectively.  

Chao2-type estimators 

For incidence data, the corresponding estimator of species richness is called 
the Chao2 estimator, the formula of which is [30]: 
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Unlike the Chao1 estimator, here the factor (T−1)/T cannot be neglected because T 
may not be sufficiently large for incidence data. When Q2 > 0, a variance estimator 
for the Chao2 estimator is: 
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where A = (T−1)/T . When Q2 = 0, the variance is modified to[31]:  
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Chiu et al.[33] derived the corresponding iChao2 estimator:  
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The variance formulas for the above-mentioned estimators can be evaluated using 
standard statistical approximation methods. Chao and Lin[34] generalized the 
Chao2 estimator to data based on sampling without replacement. The resulting 
estimator is similar to Equation (6d) but with (f1, f2) and n from the latter being 
replaced respectively by (Q1, Q2) and T.  
Incidence Coverage-based estimators (ICE-type estimators) 

Parallel to the ACE, there is a corresponding Incidence-based Coverage Estimator 
(ICE) for incidence data under the model given in Equation (9b). However, the 
definition of “sample coverage” for incidence data is slightly different: it is 
defined as the fraction of the total incidence probabilities of the detected species in 
the reference sample, or, in mathematical terms     S

i

S

i iii YIC
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type of sample coverage was first defined and estimated in Chao et al.[52] for 
capture-recapture data.  
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As with ACE, a cut-off point κ is first selected to partition the data into an 
infrequent species group (incidence frequency not larger than κ) and a frequent 
species group (incidence frequency larger than κ). The cut-off κ =10 is 
recommended. Denote the number of species in the frequent group by 

  i ifreq QS  and the number of species in the infrequent group by   
1i iinfreq QS . 

The estimated sample coverage for the infrequent group is   
11 /1ˆ

i iinfreq iQQC . 

In the special case that detection probability is homogeneous  (i.e., S  ...21 ) 
for the infrequent group, the coverage-based estimator is  
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which is similar to that in Equation (7a).  

The basic idea of the ICE[52,53] is to adjust the estimator in (12a) by 
accounting for heterogeneity among the detection probabilities. Let the number of 
sampling units that include at least one infrequent species be Tinfreq. Then the ICE 
is expressed as  
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where 2ˆinfreq is the estimate of the squared CV of the species detection probabilities 

),...,,( 21 S in the infrequent species group, 

 
 

.0,1
1

1

1ˆ
maxˆ

11

12


























 


















  
iQQi

Qii

T

T

C

S

i
ii

i

i
i

infreq

infreq

infreq

infreq
infreq 





        

(12c)

   

 

A similar ICE-1 estimator for species-rich and highly heterogeneous assemblages 
can also be obtained[54].  

Jackknife estimators 

For incidence data, the first- and second-order jackknife estimators were originally 
developed by Burham and Overton[42] in the context of capture-recapture studies. 
The formulas for the first two orders of jackknife are obtained by replacing (f1,  f2) 
with (Q1,  Q2), and replacing n with T in Equations (8a) and (8b). An approximate 
variance estimator was also given in Burnham and Overton[42]. 

3. Non-asymptotic Approach: 
rarefaction and Extrapolation 
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When there are multiple assemblages, the sample-size- and coverage-based 
integration of rarefaction and extrapolation represent a unified standardization 
method from which fair and meaningful comparisons of species richness can be 
made across assemblages. This method aims to compare the non-asymptotic 
portion of species accumulation curves. We review below the method separately 
for abundance and incidence data.  

 

3.1 Rarefaction/Extrapolation for Abundance Data 

 

3.1.1 Sample-size-based Rarefaction and Extrapolation 

Under the multinomial model in Equation (1c), let S(m) denote the number of 
species in a hypothetical random sample of m individuals for any m = 1, 2, …from 
the assemblage. If we knew the true species detection probabilities S ,...,, 21  of 
the S species, we could compute the expected value of S(m) via the following 
function: 
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1

 


mSmSE
S

i

m
i  (13a)

 

On the basis of an observed sample of size n (“reference sample”) of Sobs species, a 
sample-size-based rarefaction and extrapolation curve represents an estimator of 
the expected species accumulation curve which depicts E[S(m)] with respect to the 
sample size m. All samples are standardized by estimating the expected species 
richness for a common sample size; this sample size can be smaller than the 
reference sample (traditional rarefaction) or larger than the reference sample 
(extrapolation). An unbiased estimator[10,55] for the expected species richness in a 
rarefied sample of size m, m < n, is  
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Colwell et al.[15] and Chao and Jost[16] followed the approach of Shen et al. [56] 
and derived the following species richness estimator for the expected number of 
species in an extrapolated sample of size n+m*:  
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where 0̂f  is the estimated zero-frequency count based on the Chao1 estimator (Eq. 
6a), and f1 denotes the number of singletons. For a short-range prediction (e.g., m* 
is much lower than n), the prediction formula is approximately  )(ˆ *mnS  

*
1 )/( mnfSobs  , which is independent of the choice of 0̂f . This implies that the 

extrapolation formula in Eq. (13c) is very robust and reliable even though the 
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undetected species richness estimator 0̂f
 
is a lower bound. Previous experiences 

by Colwell et al.[15] suggested that the prediction size can be extrapolated at most 
to double the observed sample size. Chao et al.[17] proposed a bootstrap method to 
obtain the variance estimators for the estimators )(ˆ mS  and )(ˆ *mnS   as well as to 
construct the associated confidence intervals.  

The integrated sample-size-based sampling curve includes a rarefaction part 
(which plots )(ˆ mS  as a function of m < n), and an extrapolation part (which plots 

)(ˆ *mnS   as a function of n+m*), which join smoothly at the reference point (n, 
Sobs). The confidence intervals for the two parts based on the bootstrap method 
also join smoothly.   

 

3.1.2 Coverage-based Rarefaction and Extrapolation  

The concept of “coverage” (as an objective measure of sample completeness) has 
been widely applied in many research fields. Chao and Jost[16] proposed 
standardizing samples by matching their sample coverage based on rarefaction or 
extrapolation to a target level of sample coverage. This allows fair comparison of 
equally-complete samples (i.e., equal fraction of population individuals). The 
coverage-based rarefaction and extrapolation curve represents an estimator of the 
species accumulation curve, the latter of which plots E[S(m)] as a function of 
sample completeness. 

As indicated in Section 2.1.2, Turing’s definition of the sample coverage C of 
an observed sample of size n with species frequencies (X1, X2, …, XS) is expressed 
as    S

i ii

S

i ii XIpXIpnCC
11

)0(1)0()( , where I(A) is the indicator 

function, i.e., I(A) = 1 if the event A occurs, and 0 otherwise. Here we affix the 
sample size n to the notation C to facilitate rarefaction and extrapolation with 
various sample sizes. Generally, for any sample size m = 1, 2, …, let C(m) denote 
the expected sample coverage of a hypothetical sample of size m. The expected 
value of C(m) is a function of m, and can be expressed as  
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To construct the coverage-based rarefaction and extrapolation curve, we need 
to estimate E[C(m)] separately for three cases: (i) the observed or reference sample 
(i.e., m = n, a case on which Turing and Good focused in their cryptanalysis); (ii) a 
rarefied sample for m < n; and (iii) an extrapolated sample for m= n+m*, m*> 0. 
We first review Case (i) in which no unbiased estimator exists for E[C(n)] based 
on the reference sample itself. Turing’s simple and efficient estimator[35,36] is the 
complement of the proportion of singletons in the reference sample. Chao and 
Jost[16] refined Turing’s estimator by using the additional information of 
doubletons to obtain a less-biased estimator as follows:  
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For a rarefied sample of size m < n in Case (ii), an analytical unbiased estimator 
)(ˆ mC of E[C(m)] does exist, and the estimator was first derived by Chao and 

Jost[16]: 
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They also derived for Case (iii) the extrapolated coverage estimator )(ˆ *mnC 
 
for 

the expected coverage of any hypothetical enlarged sample of size n + m*:  
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When m* = 0, Eq. (14d) reduces to the sample coverage estimator for the reference 
sample given in Eq. (16b).  

The coverage-based sampling curve includes a rarefaction part (which plots 
)(ˆ mS  as a function of )(ˆ mC ), and an extrapolation part (which plots  )(ˆ *mnS   as a 

function of )(ˆ *mnC  ), which join smoothly at the reference sample point ( )(ˆ nC , 
Sobs). The confidence intervals based on the bootstrap method[16] also join 
smoothly. The curve can be extended to the coverage that corresponds to double 
reference sample size.  

The sample-size-based approach plots the estimated species richness as a 
function of sample size, whereas the corresponding coverage-based approach plots 
the same richness estimate with respect to sample coverage. Therefore, the two 
types of sampling curves can be bridged by a sample completeness curve, which 
shows how the sample coverage estimate varies with sample size and also 
provides an estimate of the sample size needed to achieve a fixed degree of 
completeness. The two types of sampling curves along with the associated sample 
completeness curve are illustrated in Section 4 through an example.  

3.2 Rarefaction/Extrapolation for Incidence Data 

3.2.1 Sample-size-based Rarefaction and Extrapolation 

The rarefaction and extrapolation for incidence data is formulated under the 
product-Bernoulli model (Equations 9a and 9b) in which the incidence frequency 
count Yi based on the incidence data of T sampling units follows a binomial 
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distribution characterized by T and detection probability i  for the ith species in 
any sampling unit. In incidence data, the sample size refers to the number of 
sampling units. Let S(t) be the number of species in a hypothetical sample of size t 
randomly selected from the assemblage. If we knew the true species detection 
probabilities S ...,,, 21  of each of the S species in each sampling unit, we could 
compute the following expected value:  
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The plot of E[S(t)] with respect to the number of sampling units t is the 

expected species accumulation curve for incidence data. The rarefaction 
(interpolation) part estimates the expected species richness for a smaller number of 
sampling units t < T. On the basis of a reference sample of T sampling units, an 
unbiased estimator )(ˆ tS

 
for E[S(t)], t < T,  is 
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This analytic formula was first derived by Shinozaki[57] and rediscovered multiple 
times[14].  

The extrapolation is to estimate the expected number of species E[S(T+t*)] in 
a hypothetical sample of T+t* sampling units (t* > 0) from the assemblage. Chao et 
al.[58] obtained an estimator  
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where 0Q̂  can be obtained using the Chao2 estimator )ˆˆ( 20 obsChao SSQ   given in 
Equation (11a). Colwell et al.[15] linked rarefaction and extrapolation to form an 
integrated smooth curve. The corresponding confidence intervals based on a 
bootstrap method[17] also join smoothly at the reference point (T, Sobs). As with 
abundance data, for a short-range prediction (e.g., t* is much less than T), the 
extrapolation formula is independent of the choice of 0Q̂  as indicated by the 

approximation formula  )(ˆ *tTS  *
1 )/( tTQSobs  . However, the extrapolation can 

be extended at most to double reference sample size. 

 

3.2.2 Coverage-based Rarefaction and Extrapolation 

For incidence data, the sample coverage of a reference sample of T sampling 
units is defined as 
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which represents the fraction of the total incidence probabilities of the detected 
species in the reference sample. This type of sample coverage was first defined in 
Chao et al.[52] for capture-recapture data. Chao et al.[17] derived an accurate 
estimator of the sample coverage for the reference sample size:  
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where    S
i i

T
k k YkQU 11 denotes the total number of incidences in the reference 

sample.  

In addition to the reference sample, we also need to consider the estimation of 
the expected sample coverage, E[C(t)], for any hypothetical sample of t sampling 
units, t = 1, 2, …. This expected sample coverage is a function of t as given below:  
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For a rarefied sample (t < T), an unbiased estimator exists for the denominator and 
numerator in Eq. (16c), respectively, but their ratio )(ˆ tC , given below, is only a 
nearly unbiased estimator of E[C(t)]: 
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This equation is analogous to Eq. (14c) for abundance data. An estimator for the 
expected coverage of an extrapolated sample with T + t* sampling units is  
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This equation is analogous to Eq. (14d) for abundance data. When t* = 0, Eq. (16e) 
reduces to the sample coverage estimator for the reference sample as given in Eq. 
(16b). As with abundance data, smooth coverage-based interpolation and 
extrapolation curves with confidence intervals can be constructed for incidence 
data up to the coverage that corresponds to the double reference sample size.  

4 Example 
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 We apply both asymptotic and non-asymptotic analyses to the rain forest tree data 
described and discussed by Magnago et al.[59]. The tree species abundance data 
were collected during January 2011 to January 2012 from 12 forest fragments in 
south-eastern Brazil. Sampling data in each fragment includes one edge and one 
interior transect, where an edge transect is about 5m inside the fragment and 
parallel to the forest edge, and an interior transect is located more than 300m from 
the nearest edge. Within each transect, every living tree with a diameter at breast 
height  > 4.8 cm and 1.3m height was collected and recorded. One of the goals 
was to compare the diversity of the Edge habitat with that of the Interior habitat.  

The original data with species functional traits were given in Table S2 of 
Magnago et al.[59]. The species abundance frequency counts for the two habitats 
are summarized in Table1. In the Edge habitat, the reference sample includes 334 
species (113 singletons and 50 doubletons) among 1978 individuals, and in the 
Interior Habitat, the reference sample includes 371 species (129 singletons and 49 
doubletons) among 2171 individuals. Based on Equation (14b), the estimated 
sample coverage values for the two habitats are nearly equal at a level of around 
94% (94.29% for the Edge habitat and 94.06% for the Interior habitat) in spite of 
the difference in sample sizes. Thus, the raw data implies that the Interior Habitat 
is more diverse than the Edge habitat for a standardized coverage of 94% or for a 
fraction of 94% of the individuals in each assemblage.  Below we apply two R 
packages to analyze the data through both asymptotic and non-asymptotic analyses, 
thereby demonstrating more informative comparisons between these two sites.  

 

4.1 Asymptotic Analysis: Species Richness Estimation 
We use the function ChaoSpecies in the R package SpadeR (Species-

richness Prediction And Diversity Estimation in R) to infer the species richness in 
each habitat. SpadeR is available from Github and can also be downloaded from 
Anne Chao’s website http://chao.stat.nthu.edu.tw/wordpress/software_download/.  
The installation and procedures are shown in the following commands. Copying 
these commands into the R Console, we obtain various species richness estimates, 
their standard errors, along with 95% confidence intervals for each site as shown 
below. The output for the Edge habitat is shown first, followed by the output for 
the Interior habitat.  

 
install.packages('devtools') 
library(devtools) 
install_github('AnneChao/SpadeR') 
library(SpadeR) 
Edge = rep(c(1:21,23,25,27,28,30,32,36,37,41,45,46,49,89,110),c(113,50, 
39,29,15,11,13,5,6,6,3,4,3,5,2,5,2,2,2,2,1,2,1,1,1,1,1,2,1,1,1,1,1,1,1
))    

Interior = rep(c(1:21,23,25,27,28,30,32,34,35,52,123,140),c(129,49,42,         
32,19,17,7,9,7,7,6,3,3,3,4,4,2,2,3,4,6,2,1,2,1,1,1,1,1,1,1,1))       
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Forest = list("Edge" = Edge, "Interior" = Interior) 
#Output for Edge data 
out1 = ChaoSpecies(Forest$"Edge",datatype = "abundance", k = 10, conf  
= 0.95)  

#Output for Interior data 
out2 = ChaoSpecies(Forest$"Interior",datatype = "abundance", k = 10, 
conf = 0.95)  

#Show the output of Edge data 
out1  
 
 
(1) BASIC DATA INFORMATION: 
 
                                                    Variable Value 
Number of observed individuals                             n  1978 
Number of observed species                                 D   334 
Coverage estimate for whole data                           C 0.943 
CV for whole data                                         CV 1.796 
Cut-off point                                              k    10 
Number of observed individuals for rare species       n_rare   832 
Number of observed species for rare species           D_rare   287 
Estimation of the sample coverage for rare species    C_rare 0.864 
Estimation of CV for rare species in ACE             CV_rare 0.703 
Estimation of CV1 for rare species in ACE-1         CV1_rare 0.886 
Number of observed individuals for abundant species   n_abun  1146 
Number of observed species for abundant species       D_abun    47 
 
                    f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 
Rare.Species.Group 113 50 39 29 15 11 13  5  6   6 
 
 
(2) SPECIES RICHNESS ESTIMATORS TABLE: 
 
                          Estimate   s.e. 95%Lower 95%Upper 
Homogenous Model           379.106  9.234  364.322  401.097 
Homogeneous (MLE)          334.912  0.964  334.167  338.980 
Chao1 (Chao, 1984)         461.625 32.093  412.553  541.353 
Chao1-bc                   458.016 31.128  410.397  535.314 
iChao1 (Chiu et al. 2014)  488.313 21.764  451.204  537.173 
ACE (Chao & Lee, 1992)     443.684 21.695  408.712  495.024 
ACE-1 (Chao & Lee, 1992)   481.667 33.005  429.796  561.625 
1st order jackknife        446.943 15.028  421.116  480.426 
2nd order jackknife        509.904 26.021  465.839  568.698 
 
 
#Show the output of Interior data 
out2  
 
(1) BASIC DATA INFORMATION: 
 
                                                    Variable Value 
Number of observed individuals                             n  2171 
Number of observed species                                 D   371 
Coverage estimate for whole data                           C 0.941 
CV for whole data                                         CV 1.979 
Cut-off point                                              k    10 
Number of observed individuals for rare species       n_rare   932 
Number of observed species for rare species           D_rare   318 
Estimation of the sample coverage for rare species    C_rare 0.862 
Estimation of CV for rare species in ACE             CV_rare 0.716 
Estimation of CV1 for rare species in ACE-1         CV1_rare 0.909 
Number of observed individuals for abundant species   n_abun  1239 
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Number of observed species for abundant species       D_abun    53 
 
                    f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 
Rare.Species.Group 129 49 42 32 19 17  7  9  7   7 
 
 
(2) SPECIES RICHNESS ESTIMATORS TABLE: 
 
                          Estimate   s.e. 95%Lower 95%Upper 
Homogenous Model           422.086  9.857  406.120  445.310 
Homogeneous (MLE)          372.088  1.054  371.221  376.358 
Chao1 (Chao, 1984)         540.728 40.631  477.860  640.582 
Chao1-bc                   536.044 39.372  475.074  632.732 
iChao1 (Chiu et al. 2014)  572.505 29.327  522.722  638.622 
ACE (Chao & Lee, 1992)     498.834 23.842  459.971  554.673 
ACE-1 (Chao & Lee, 1992)   545.927 37.058  487.012  634.759 
1st order jackknife        499.941 16.057  472.111  535.430 
2nd order jackknife        579.889 27.804  532.108  641.842 
 

 

Nearly all of the output is self-explanatory. We only note that the 
“Homogeneous  Model” estimate is obtained from Eq. (7a), and the 
“Homogeneous (MLE)” is based on Eq. (3). These two estimators, derived under 
the assumption that all species detection probabilities are the same, usually 
severely underestimate the true species richness if heterogeneity exists. The CV 
estimates for the Edge and Interior habitats are, respectively, 1.796 and 1.979 (see 
the output above), indicating the presence of heterogeneity. Consequently, the two 
estimates yield substantially low estimates in each habitat.  

The Chao1, iChao1, and ACE all give consistent estimates between 440 and 
490 for the Edge habitat, whereas their corresponding estimates for the Interior 
habitat are between 500 and 570. We do not include the ACE-1 in our comparison 
because all the species richness estimates are less than 1000 and the estimated CV 
values for both sites are not extremely high. Each of the estimators reveals that the 
species richness of the Interior habitat is higher than that in the Edge habitat, 
although the 95% confidence intervals overlap. The first order and second order 
jackknife estimators also show the same ordering, but the second order jackknife 
estimate in each habitat is higher than any of the Chao1, iChao1 and ACE 
estimates.  

We present the Chao1 estimates for illustration. The species richness 
estimates in the Edge and Interior habitats are, respectively, 462 with a 95% 
confidence interval of (413, 541) in the Edge habitat, and 541 with a 95% 
confidence interval of (478, 641) in the Interior habitat. The confidence intervals 
for the two habitats overlap, implying that significant difference is not guaranteed 
for comparing species richness for complete assemblages. However, data do 
support significance difference in species richness if only a fraction of the 
assemblage is compared, as shown in the coverage-based rarefaction and 
extrapolation in the next section.  
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4.2 Non-asymptotic Analysis: Rarefaction/Extrapolation 
 
The sample-size- and coverage-based rarefaction and extrapolation sampling 
curves along with the sample completeness curves can be obtained using the R 
package iNEXT (iNterpolation and EXTrapolation) which is available on CRAN 
and also on Anne Chao’s website. The following commands return the three 
sampling curves as shown in Figure 1 to Figure 3, along with some related 
statistics (omitted here). The omitted output includes basic data information and 
species richness estimates for some rarefied and extrapolated samples.  
 
install.packages ("iNEXT") 
library(iNEXT) 
library (ggplot2)  
out <- iNEXT(Forest, q=0, datatype ="abundance", endpoint=4000) 
#plot sample-size-based curve (as shown in Fig. 1) 
ggiNEXT(out, type=1)  
#plot sample completeness curve (as shown in Fig. 2) 
ggiNEXT(out, type=2)  
#plot coverage-based curve (as shown in Fig. 3) 
ggiNEXT(out, type=3) 
#to show the detailed output for related statistics  
out  
 

In the sample-size-based rarefaction and extrapolation sampling curve (Fig. 
1), we compare two equally-large samples. For each site, the extrapolation is 
extended to a maximum size of 4000 (by specifying endpoint=4000 in the iNEXT 
function as shown in the above commands). The maximum size of 4000 is 
approximately double that of each reference sample size. Extrapolation beyond the 
double reference sample size could theoretically be computed and used for ranking 
species richnesses, but the estimates may be subject to some prediction biases and 
should be used with caution in estimating species richness ratios or other measures. 
Figure 1 clearly reveals that curve of the Interior habitat lies above that of the 
Edge habitat. However, the confidence intervals of the two sites overlap, implying 
that comparing two equally-large samples is inconclusive regarding the test of 
significant difference in species richness between the two habitats.  

The sample completeness curve in Figure 2 shows how the sample coverage 
varies with sample size. Although the curve of the Edge habitat lies above that of 
the Interior habitat, there is little difference between the two curves for any sample 
size. For the Edge habitat, when the sample size is extended from 1978 to 4000, 
the sample coverage is extended from 94.29% to 97.69% (as shown in Figure 2 or 
the unreported iNEXT output). For the Interior habitat, when the sample size is 
extended from 2171 to 4000 the coverage is extended from 94.06% to 96.89% (as 
shown in Fig. 2 or the unreported iNEXT output), with a very small increment.  
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In the coverage-based rarefaction and extrapolation sampling curve (Figure 
3), we compare two equally-complete samples (or equal fractions of population 
individuals). The extrapolation is extended to 97.69% for the Edge habitat and to 
96.89% for the Interior habitat, as explained in the preceding paragraph. Except 
for the very low initial coverage values, the Interior habitat is significantly more 
diverse than the Edge habitat as evidenced by the non-overlapping confidence 
intervals for any fixed coverage up to about 97% in Figure 3. This implies that if 
we compare species richness for equal population fractions up to 97%, the data do 
provide sufficient information to conclude that the Interior habitat is significantly 
more diverse. Note that significant difference cannot be guaranteed based on each 
of the three asymptotic species richness estimators (Chao1, iChao1 and ACE) due 
to the overlapping confidence intervals. Thus, if we compare species richness for 
the two complete assemblages (i.e., data are extrapolated to a coverage of unity), 
the data do not provide sufficient evidence to conclude significant difference in 
species richness between the two sites. In other words, data do not have sufficient 
information to infer the rarest 3% of each assemblage. Unlike the sample-sized-
based standardization in which size is determined by samplers, here the coverage-
based standardization compares equal population fractions of each assemblage. 
The population fraction is an assemblage-level characteristic that can be reliably 
estimated from data. 

As demonstrated in the above-described example, the two R packages 
(SpadeR and iNEXT) supply useful information for both asymptotic and non-
asymptotic analyses. These methods efficiently use all available data to make 
robust and meaningful comparisons of species richness between assemblages for a 
wide range of sample sizes/completeness. These methods have also been 
generalized to diversity measures that incorporate species abundances[17] and those 
that take into account the evolutionary history among species[60].  
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Table 1: The tree species frequency counts for the data of two habitats (Edge and Interior) 
in south-eastern Brazil[59], where fi denotes the number of species represented by exactly i 
individuals in the sample.   
 
 
Habitat f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 
Edge 113 50 39 29 15 11 13 5 6 6 3 4 3 5 
Interior 129 49 42 32 19 17 7 9 7 7 6 3 3 3 
 
Habitat f 15 f 16 f 17 f 18 f 19 f 20 f 21 f 23 f 25 f 27 f 28 f 30 f 32 
Edge 2 5 2 2 2 2 1 2 1 1 1 1 1 
Interior 4 4 2 2 3 4 6 2 1 2 1 1 1 
 
Habitat  f 34 f 35 f 36 f 37 f 41 f 45 f 46 f 49 f 52 f 89 f 110 f 123 f 140 
Edge 0 0 2 1 1 1 1 1 0 1 1 0 0 
Interior 1 1 0 0 0 0 0 0 1 0 0 1 1 
 
Habitat n Sobs Sample 

coverage
CV 
estimate 

Edge 1978 334 94.29% 1.796 
Interior 2171 371 94.06% 1.979 
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Fig. 1. Sample-size-based rarefaction (solid lines) and extrapolation (dashed lines) 
sampling curves with 95% confidence intervals (shaded areas, based on a bootstrap 
method with 200 replications) comparing tree richness for data of two habitats (Edge and 
Interior) in south-eastern Brazil[59]. Observed samples are denoted by the solid dot and 
triangle. The extrapolation extends up to a maximum sample size of 4000. The estimated 
asymptote for each curve is shown next to the arrow at the right-hand end of each curve.  
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Fig. 2. Sample completeness curve which depicts how sample completeness (measured 
by sample coverage) increases with sample size for tree data of two habitats (Edge and 
Interior) in south-eastern Brazil[59]. For each habitat, the plot of sample coverage for 
rarefied samples (solid lines) and extrapolated samples (dashed lines) with 95% 
confidence intervals (shaded areas, based on a bootstrap method with 200 replications) is 
extrapolated up to a maximum sample size of 4000. The observed samples are denoted by 
the solid dot and triangle. For each reference sample point, the numbers in parentheses 
show the x- and y-axis coordinate.   
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Fig. 3. Coverage-based rarefaction (solid lines) and extrapolation (dashed lines) sampling 
curves with 95% confidence intervals (shaded areas, based on a bootstrap method with 
200 replications) comparing tree richness for data of two habitats (Edge and Interior) in 
south-eastern Brazil[59]. Observed samples are denoted by the solid dot and triangle. The 
extrapolation extends up to the coverage value of the corresponding maximum sample 
size of 4000 in Fig. 2 (97.69% in the Edge habitat, and 96.89% in the Interior habitat). 
The estimated asymptote for each curve is shown next to the arrow at the right-hand end 
of each curve.  


