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Abstract—Stratigraphically constrained cluster analysis is a multivariate method for quantitative definition
of stratigraphic zones. As opposed to ordinary. unconstrained cluster analysis, only stratigraphically
adjacent clusters are considered for merging. The method of incremental sum of squares has been used
widely for unconstrained analyses and has proved particularly satisfactory for pollen frequency data.
CONISS is a FORTRAN 77 program for stratigraphically constrained cluster analysis by this method.
Several data transformations lead to different implicit dissimilarity coefficients. As an option, the program
also will perform an unconstrained analysis, which can be useful for comparison with the constrained

analysis.
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INTRODUCTION

Biostratigraphic sequences may be divided into zones
to facilitate description and corrclation. Zones can be
defined by the presence or absence of fossil taxa, by
the abundance of selected taxa, or by the entire fossil
assemblage. Assemblage zones are based on the re-
presentation of all taxa present, or on taxa of a certain
type (Hedberg, 1976). Assemblage zones can be de-
fined for a single stratigraphic section or for a large
number of sections (American Commission on Strati-
graphic Nomenclature, 1970). Quaternary palynolo-
gists typically define local pollen assemblage-zones for
individual sections. Many investigators simply have
demarcated zones by visual inspection of a strati-
graphic diagram. Others have used quantitative meth-
ods to delincate zones, which are objective, although
as might be expected different methods typically give
somewhat different results. Nevertheless, they are use-
ful for analysis and presentation of data and provide
consistent critenia for defining zones (Birks and Gor-
don, 1985; Birks, 1986).

Most mcthods of numerical zonation are cluster
analyses, constrained so that clusters contain only
stratigraphically adjacent samples. Scveral techniques
have been used, including divisive and agglomerative
hicrarchical methods and nonhicrarchical methods
(Birks and Gordon, 1985. Gordon, 1980, 1981).

Onc of the earliest programs for constrained clus-
ter analysis was OPTAGG by E. J. Cushing., a FOR-
TRAN adaptation of L. Orloci’s ALGOL program of
the same name. which was unconstrained (E. J. Cush-

*Contribution No. 323, Limnological Rescarch Ceater, Un-
iversity of Minnesota.

ing. 1986, pers. comm.). OPTAGG performs a group-
average cluster analysis, which is hicrarchical ag-
glomerative, with cither Euclidian distance or Orloci's
(1967) stundard or chord distance as the dissimilarity
coetlicient. (OPTAGG doces not perform the optimal
agglomeration described by Orloci, 1967.) OPTAGG
has had several applications, including unconstrained
cluster analysis of Cretaceous and Tertiary palyno-
morphs (Oliz, 1969, 1971) for characterizing zones
and constrained analysis for zonation of Quaternary
fossil-pollen sequences (e.g. Mchringer, Arno, and
Peterson, 1977).

The most widely used methods of constrained clus-
ter analysis for palynological data have been those of
Gordon and Birks (1972). They presented one ag-
glomerative method (CONSLINK), which uses a
single linkage criterion for merging clusters, and two
divisive methods, SPLITINF, which uses an informa-
tion statistic, and SPLITLSQ, which uses a sum of
squares measure of within-cluster variability. Gordon
and Birks used two different dissimilarity coefficients
with CONSLINK, the Manhattan or city-block me-
tric and the Canberra metric. The former has been
used more frequently. An excellent example of the
application of these methods is Birks and Berglund
(1979). Birks and Gordon (1985) recently published a
listing of the program ZONATION, which carrys out
all of these zonation procedures.

Onc criterion for numerical zonation has been to
minimize within-zone dispersion (sum of squarcs) or
mecan within-zone dispersion (variance). Gill (1970)
and Gordon and Birks (1972) published hicrarchical
divisive methods to approximate this criterion. Haw-
kins and Mecrriam (1973, 1974) and Hawkins (1976)
presented nonhicrarchical methods that use a dynam-
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ic programming algorithm for determining the overall
minimum within-zone dispersion for g zones for uni-
variate or multivariate data. Birks and Gordon (1985)
fully describe the dynamic algorithm, and their pro-
gram ZONATION will carry it out.

These methods assume homogeneity of the fossil
assemblage to be the primary criterion of zone defini-
tion. Some stratigraphic sequences. however, may be
transitional in nature. The BARRIER algorithm of
Gordon (1973) attempts to separate transitional levels
or zones from more homogeneous ones. The
algorithm minimizes within-cluster variation around
*“local centroids’ and places **barriers™ between adja-
cent samples, the heights of which indicate the dissi-
milarities between adjacent groups based on a sum of
squares criterion. High barriers indicate transitional
samples. The algorithm is iterative and depends on an
arbitrary value for the sum of barrier heights. The
method also can be approached as a form of single-
linkage cluster analysis with a particular dissimilarity
coefficient, and a dendrogram can be constructed.
Examples of its use with fossil-pollen stratigraphics
are Gordon and Birks (1974), Birks (1981), and Jac-
obson and Grimm (1986).

An advantage of hicrarchical methods is that rela-
tionships among zones arc examined casily. Agglo-
merative methods are more satisfactory for zonation,
because clusters are built up locally. Stratigraphically
constrained hicrarchical divisive methods, although
computationally feasible, are dependent on the exact
and entire stratigraphic scquence. The position of the
first split depends on the composition of all the sam-
ples above and below it, and the positions of splits
may change if the sequence is truncated at the top or
bottom, especially if any stratigraphic revertence
occurs. OPTAGG and CONSLINK are both
hierarchical and agglomerative. The single linkage
criterion of CONSLINK can lead to severe chaining,
especially in pollen sequences where analysts usually
place samples closer together in zones of rapid
change.

Recent studies have indicated that with frequency
pollen data the incremental sum of squares method of
cluster analysis performs satisfactorily (e.g. Birks,
Webb, and Berti, 1975). The method is agglomerative
and hicrarchical. This paper describes the program
CONISS, which carries out stratigraphically con-
strained cluster analysis by the method of incremental
sum of squares. As an option the program will per-
form an unconstrained analysis. Although intended
for stratigraphic data, the method is useful for other
types of linearly ordered or transect data, for example
vegetation zones along a natural gradient. Examples
arc pollen frequency data, but any type of appropriate
fossil or even nonfossil stratigraphic data may be
zoned.

THE METHOD AND ALGORITHM

Ward (1963) first published the incremental sum of

squares method. but several others discovered it in-
dependently. and it is known by several other names,
including Ward's method. minimum variance, sum of
squares, error sum of squares, and optimal ag-
glomeration (Ward, 1963; Orloci, 1967, 1978; Wish-
art, 1969; Anderson, 1971; Anderberg, 1973; Gordon,
1981; Pielou, 1984). The name incremental sum of
squares (Burr. 1970: Clifford and Stephenson, 1975)
most accurately describes the technique, which is one
of the most widely used methods of cluster analysis.

A general goal of sum of squares cluster analysis is
to minimize the total within-cluster dispersion for g
groups around g centroids. The incremental sum of
squares method approximates the overall optimal g
groups. It is an agglomerative algorithm that places
clusters in a hierarchy. Truly optimal clusters for
different values of g would not be hierarchical necess-
arily (Gordon. 1981; Birks and Gordon, 1985). The
optimality of the hierarchical zones can be determined
with the dynamic algorithm in Birks and Gordon's
(1985) program ZONATION. In many situations
clusters formed. by the incremental sum of squares
method will be those with the minimum total within-
cluster dispersion. In situations in which the clusters
do not have the minimum total dispersion, the
hicrarchical nature of the zonation may be more de-
sirable, cspecially if the sample to sample variability
differs along the section. Zones may change in
heterogencity, and the g most geologically reasonable
zones may not be the g zones with minimum total
within-cluster dispersion. The hicrarchical cluster
analysis allows for the local determination of zone
boundarics along the section. The name “*minimum
variance™ for the incremental sum of squares method
is misleading somewhat, as the hierarchical ag-
glomeration does not give necessarily the clusters with
minimum variance possible.

Within-cluster dispersion or sum of squares for the
pth cluster is defined as:

)
— = 2
Dp = Z Z (xptl - X,,,)
1=] y=
where n, = number of samples in cluster p,
m = number of variables, x,, = value of jth variable
of sample / in cluster p, and %, = mean value of
variable j in cluster p. Mean dispersion or variance of
cluster p is D,/n,. Total dispersion for g clusters is:

If clusters p and ¢ are merged together to form cluster
pq. the increase in dispersion /,, is:

L, = D, — D, - D,

At cach stage of the clustering the two clusters p and
¢ that givc the least increase in dispersion [, are
merged.

These cquations are sufficient for a computer
algorithm to perform the cluster analysis, but a more
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efficient algorithm exists (Wishart, 1969; Burr, 1970;
Anderson, 1971). First., a dissimilarity matrix of
squared Euclidian distances between all samples is
generated. The data matrix then is no longer required.
At each successive stage the dissimilarity matrix is
searched, and the pair of clusters p and g with the
smallest dissimilarity value (d,,) are merged. The in-
crease in dispersion /,, = }d,,. and total dispersion is
incremented by this amount after each stage. The
number of clusters decreases by one, and all dissi-
milarities in the matrix with either cluster p or ¢ must
be updated. The update equation for the new dissi-
milarity value d,,,,, between cluster r and new cluster
pq formed by the merger of p and q is:

_ (n, + n,)d, + (n, + n)d,, + nd,
n, +n, +n,

d,

(py)

In the usual unconstrained analysis, the entire
dissimilarity matrix is searched at each stage for the
minimum value. In the constrained analysis. only
stratigraphically adjacent clusters are considered.

DISSIMILARITY COEFFICIENTS

The described algorithm operates on a dissimilar-
ity matrix of squared Euclidian distances. Although in
practicc any dissimilarity matrix can be used, the
geometric propertics of non-Euclidian dissimilarity
cocfficicnts have not been investigated. However,
transformations of the data can be made before cal-
culation of the matrix of squared Euclidian distances.
Transformations can weight variables or samples, and
certain transformations produce dissimilarity coef-
ficients other than simple Euclidian distance. The
program will perform three transformations: standar-
dization of variables to mean zero and unit standard
deviation, normalization of sample vectors to unit
length, and square-root transformation. Standardiza-
tion equally weights the variables, and the associated
dissimilarity coefficient may be referred to as standar-
dized Euclidian distance. The implicit dissimilarity
coefficient resulting from normalization of sample
vectors is Orloci’s (1967, 1978) standardized or chord
distance (termed cosine theta distance by Prentice
(1980); the well-known cosine theta similarity coef-
ficient of Imbrie and Purdy (1962) is the cosine of the
angle subtending the chord). A square-root trans-
formation of frequency data produces the chord dis-
tance of Edwards and Cavalli-Sforza (1964). Both
normalization of sample vectors and square-root
transformation place samples on the surface of a unit
hypersphere, thus making the Euclidian distance bet-
ween transformed samples a chord. Orloci's chord
distance alters the lengths but not the directions of the
sample vectors. Edwards and Cavalli-Sforza’s chord
distance weights variables and alters the orientations
of the sample vectors. For frequency data, this cocf-
ficient up-weights rare variables rclative to abundant
ones. It has proved particularly satisfactory for pollen
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percentage data (Overpeck, Webb, and Prentice,
1985). (Sce Prentice (1980) and Overpeck, Webb, and
Prentice (1985) for further discussion of dissimilarity
coefficients for relative and absolute pollen data.)

DENDROGRANMS

A dendrogram illustrates the hierarchical relation-
ships of the clusters defined by the analysis. Various
criteria have been used to define the heights of nodes
connecting clusters in dendrograms for incremental
sum of squares cluster analysis. including (1) increase
in dispersion at each stage (Gordon. 1981), (2) total
dispersion at each stage (Ward. 1983: Anderberg.
1971). (3) within-cluster dispersion of individual clus-
ters (Pielou. 1984), and (4) mean within-cluster disper-
sion of individual clusters (Orloci. 1967: Birks. Webb,
and Berti, 1975). Each of these scales provides some-
what different information about the analysis.
Dendrograms with scales (1) and (4) are subject to
reversals. Dendrograms (3) and (4) provide informa-
tion about individual clusters. Within-cluster disper-
sion (3) is highly dependent on cluster size. Total
within-cluster dispersion (2) is not subject to reversals
and illustrates the progressive formation of the clus-
ters—the node of cach merger is above the nodes of all
previous mergers. [n general, dendrograms (2) and (4)
provide the most useful information.

Clusters may be defined by simply cutting the
dendrogram at a given height. This practice may be
uscful for defining zones, depending on the inves-
tigator's purpose, but it can be arbitrary, as the same
zones may not be duplicable by a straight cut on the
different dendrograms. A straight cut across den-
drogram (4) will produce clusters all having mean
within-cluster dispersion ess than a certain value. If
homogeneity (little within-zone variability or disper-
sion) is a criterion for zone definition (e.g. Gordon
and Birks, 1972), this strategy might be the best. In a
stratigraphic sequence, however, some clearly recog-
nizable zones may be less homogencous than others,
cither because of sample to sample variability or
strong gradation from bottom to top. A straight cut
across dendrogram (2) will in many situations
produce zones similar to those the investigator would
have selected by inspection. This cut marks off all
clusters formed up to a certain stage in the agglomera-
tion process. A good stratcgy might be to delimit
zones by a straight linc across dendrogram (2), and
then, if desired, divide certain zones further into sub-
zones (Hedberg, 1976, p. 49) that have interpretive
value. Alternatively, different parts of the strati-
graphy may be considered scparately. The geologic-
ally most reasonable dendrogram clusters may require
different cutoffs at different stratigraphic levels. The
hicrarchical nature of the cluster analysis leads to
qualitative decisions concerning criteria for zone defi-
nition, but in any instance the analysis provides a
quantitative characterization of the zoncs defined.
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EXAMPLE

The following example is of a fossil-pollen
sequence consisting of 68 samples from an 11 m core
spanning 12,000 radiocarbon yrs from Wolsfeld Lake,
Minnesota (Fig. 1) (see Grimm (1983) for site and
other details). Seventeen upland pollen-types were
used in the analysis. Eliminated were all types <3%
at every level, aquatics, Gramineae, Salix, and Pinus.
Elimination of rare taxa has little effect on the analy-
sis. Aquatics were eliminated because the interest was
upland vegetation. Gramineae and Salix were elimi-
nated because of highly local representation, prob-
ably from aquatic grasses and willows growing
around the lake. Pinus exceeds 3% but probably was
all transported from long distances; it is a prolific
polien producer and probably never occurred around
the site. A square-root transformation was made of
the data, thus the implicit dissimilarity coeflicient is
Edwards and Cavalli-Sforza's chord distance. Six
zones are defined by a straight cut of the dendrogram
of total dispersion (Fig. ). The zones simply are given
letters for identification. In addition. Zone C is di-
vided into three subzones by a lower cut of the
dendrogram.

The dendrogram of mean within-cluster dispersion
shows the relative homogencity of the zones. Basal
Zonc A, the late-glacial “*spruce-zone,™ has high with-
in-cluster dispersion, becausc of the constant decline
of Picea and its replacement by deciduous trees.
Zones B and Ca also are relatively heterogencous
because of their transitional nature. The heteroge-
neity of Zone Cb is more the result of haphazard
fluctuations in pollen types, Zones Ce through A all
have similar degrees of relative homogencity. Zone Ca
is characterized by the decline of deciduous tree pollen
and the increase in herb pollen, Zone Cb by the
maximum of herb pollen, and Zone Cc by somewhat
decreased herb pollen and high Ostrya. Zone C re-
presents a time when prairie existed in the region. The
zone as a whole is heterogencous, but the subzones,
particularly Cc, are less so. The mean dispersions of
Subzones Ca and Cb are high, but the addition of the
many samples from the relatively homogeneous Sub-
zone Cc lowers the mean dispersion for the entire
zone, hence the reversal in the dendrogram.

The unconstrained analysis (Fig. 2) allows exam-
ination of the distinctiveness of zones and of the
relationships among zones. The zones and subzones
defined all fall out as distinct clusters. Only two sam-
ples (36 and 58) cluster with samples primarily from
another zonc. Sample 36 (1090 cm) near the bottom of
Zone D has lower Quercus and higher prairic pollen-
types compared to the rest of Zone D, but clusters
with samples from Subzone Cc, rather than with the
underlying Subzone Ca. Sample 58 (1530 cm) in Sub-
zone Ca has Quercus and Artemisia values resembling
Subzone Cb and clusters with samples from that sub-
zone. The remaining samples from Subzone Ca form
a cluster that merges with Zone B, rather than with

Subzone Cb as in the constrained analysis. Thus the
inclusion or exclusion of sample 58 from Zone Ca
determines whether this subzone clusters with Zone C
or Zone B. In any instance, Subzone Ca is transitional
in nature.

The unconstrained analysis can indicate revertence
—the reoccurrence of a pollen assemblage higher in
the sequence. The cluster composed of samples from
Zone B and Subzone Ca merges with Zone E, from
near the top of the section. The analysis shows the
close resemblance of these early and late Holocene
pollen-assemblages that indicate mixed deciduous
forest. Although similar, however. they are distinct in
the analysis: the main difference being the relative
importance of Ulmus and Ostrya. Complete rever-
tence would be demonstrated by mixing of samples in
one cluster from two stratigraphically nonadjacent
zones. Substantial mixing of samples from adjacent
zones in the unconstrained clusters might suggest that
the zone boundary is unwarranted.

The unconstrained cluster analysis also can be
used for data from more than one stratigraphic sec-
tion to delimit regional assemblage zones (Birks and
Gordon, 1985). Clusters containing samples from dif-
ferent sections would define regional assemblage
zones. A cluster containing samples from a single
scction, may indicate a zone of only local occurrence.
Birks and Gordon (1985, p. 102-105) provide an
example of such an analysis, using incremental sum of
squares cluster analysis.

PROGRAM SPECIFICATIONS

The program is written in FORTRAN 77 and is in
complete accordance with the ANSI standard. It has
been compiled and run successfully on a CRAY-1
computer and with two different compilers on a CDC
CYBER 845. It will run on much smaller computers.
The dissimilarity matrix is held in a 1-dimensional
array to reduce core requirements, but as a result the
code is difficult to follow in places. Subroutines for
plotting dendrograms are included, but they can be
climinated if the plotting package is not available.

Output

(1) The first section of output indicates the pro-
gress of the program up to the actual clustering.

(2) The second section is the merge data, which are
printed out in the order of the agglomerative cluster-
ing process (scc Anderberg, 1973). For n samples,
there arc n — | cluster mergers or stages. Initially
cach cluster is assigned a number corresponding to its
order in the input data. The first merger, and prob-
ably the next few, will involve only single-sample
clusters. After two clusters arc merged, the new cluster
is assigned the lower number of the two original
clusters. Thus, if clusters 10 and 19 are merged, the
new cluster now is known as cluster 10. A dendrogram
can be constructed easily by following the table of
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Figurc 2. Dendrogram from unconstrained incremental sum of squares cluster analysis of 68 samples from
Wolsfeld Lake. Samples are identified by zone (letter) and stratigraphic position (numbered from top to
bottom). Dashed lines separate clusters corresponding to zones in pollen diugram.

merge data. Printed for each merger and the new
cluster are the increasc in dispersion, total dispersion,
within-cluster dispersion, and mean within-cluster
dispersion.

(3) The third section prints out sample numbers.
The first column is the sequence order of the samples,
the numbers identifying the samples in the merger
table. For constrained analyses the second column is
sample depths. For unconstrained analyses the

sccond column is sample numbers as assigned by the
investigator, which may be depths for stratigraphic
data or arbitrary numbers for nonstratigraphic data.

(4) For unconstrained analyses the order of sam-
ples on the dendrogram, as established by subroutine
DORDER, is printed. This order is not unique, for
the dendrogram is similar to a mobile, and branches
can be swung around. However, the order is useful for
an initial plot of the dendrogram. For constrained
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analyses, of course, the order of samples is strati-
graphic.
Dendrogram plots

The program contains three subroutines

(DDGRAM, TREE. DEPCOL) for plotting dendro-
grams with any of the four possible scales for either
the constrained or unconstrained analysis. For con-
strained analyses a column indicating the depth of
each level is plotted along side the dendrogram, and
the depth of every tenth sample is plotted. For uncon-
strained analyses the depth column is eliminated, and
the number of each sample is plotted. The order of
samples is that established by subroutine DORDER.

The plotting routines use the DISSPLA graphics
package, version 9.0 (Integrated Software Systems
Corporation. 1981). They assume a plotting device
with a continuous paper roll (¢.g. CALCOMP plot-
ter). Installation and device dependent subroutines
and arguments are indicated in the program listing. If
DISSPLA is not available, these subroutines can be
deleted from the program, and no other program
modifications are necessary, but lines 94-96 and
254-260 can be deleted if desired. For other plotting
packages, the algorithm in subroutine TREE can be
adapted for plotting dendrograms.

Files

The data are rcad from a file connected to unit |
and program control cards from a file connected to
unit 5. These files must be preconnected with systems
commands. The cluster results are written to unit 6.
As an option, the data after any transformations may
be written to unit 7.

Control cards

A sct of instructions read from unit 5 controls
action of the program. Some cards are required and
others are optional. Each instruction begins in col-
umn 1. The following instructions can be placed in
any order.

NUMBER OF [required; # is an integer value]

SAMPLES = n

NUMBER OF {required; m is an integer value]

VARIABLES =

m

DATA ARE [optional; default; this or onc of

PROPORTIONS the following two instructions
may be sclected]

DATA ARE [optional}

PERCENTAGES

DATA ARE [optional]

COUNTS

CONVERT {optional; converts either counts

DATA TO or percentages to proportions]

PROPORTIONS

SQUARE ROOT [optional; this or one of the

TRANSFORMA- following instructions may be

TION sclected; default is no trans-
formation]

STANDARDIZE [optional; standardizes variables

VARIABLES to mean 0, standard deviation 1]}

NORMALIZE [optional; normalizes sample

SAMPLES vectors to unit length]

CONSTRAINED (optional; default; this or the
following instruction may be
selected]

UNCON- [optional]

STRAINED

INPUT FOR- [optional. default =

MAT = format  (F5.0,5X.10F7.2,/(10X.10F7.2))]

OUTPUT FOR- [optional, for data written to

MAT = format  unit 7, default =
(F8.2,2X.5E14.6./(10X,5E14.6))]

WRITE DATA  [optional; causes data to be

written to unit 7; useful if a
data transformation has been
madc]

The (ollowing instruction, if present, must be placed
after those listed.

PLOT
DENDROGRAM

[optional; plots dendrogram;
this card alone will plot a de-
fault dendrogram)

The following instructions alter features of the
dendrogram.  They must  follow the PLOT
DENDROGRAM card and can occur more than
once; their order will affect the plot.

HEIGHT = x [optional; x = the height of the
dendrogram in inches; default
= 4.0)

WIDTH = x [optional; x = the width of the
dendrogram in inches; default
= 10.0]

CHARACTER [optional; x = height of letter-

HEIGHT = x ing in inches; default = 0.10]

SCALE = »n [optional; n = an integer value

from 1-4; determines the scale
of the dendrogram; default = 2
(see next)]

Every time a SCALE card is encountered, a dendro-
gram is plotted with the current values of HEIGHT,
WIDTH, and CHARACTER HEIGHT. These val-
ucs may be changed between SCALE cards. If no
SCALE card is present, a dendrogram with the de-
fault scale is plotted. The values of SCALE are as
follows:

SCALE = | [Increase in dispersion]
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SCALE
SCALE
SCALE = 4 [Mean within-cluster dispersion]

2 [Total dispersion]

3 [Within-cluster dispersion]

Core requirements and array dimensions

The amount of memory required depends on the
dimensions of the data and distance arrays, on wheth-
er double precision is used (see next). and on whether
the graphics subroutines are used. The program is
dimensioned for a maximum of 150 samples and 25
variables. These dimensions are changed easily by
changing the values of MAXV, MAXL, and MXDM
(see lines 29-31 in program) in the PARAMETER
statements in the main program and in subprograms
CCLUS, UCLUS, UPDATE. and D2.

To reduce amount of memory required, some
arrays have been overlaid. To maximize execution
time, however, the two largest arrays, which hold the
data and distance matrices, are separate. In some
situations overlaying these arrays can reduce substan-
tially core requirements. The necessary program mod-
ifications involve writing out the distance matrix as it
is gencrated., then reading it back in. Core require-
ments will be reduced only if MAXV is > 12, The
following modifications will overlay the data and dis-
tance matrices.

Replace lines 35-36 with:
DIMENSION X(MAXV,MAXIL)
EQUIVALENCE (D,X)
DIMENSION Z(MAXL,12),N(MAXL,12)
EQUIVALENCE (Z,N)
Insert after line 211;
OPEN (10,STATUS='SCRATCH',FORM =
‘UNFORMATTED")
Replace line 220 with:
WRITE (10) DSQD
Insert after line 222:
REWIND 10
DO 175 I=LID
READ (10) D(I)
175 CONTINUE
Precision

After each iteration the dissimilarity matrix is up-
dated, and rounding error accumulates. Depending
on the number of samples, on the degree of sample
similarity, and on the size of numeric storage units of
a particular computer, single precision arithmetic may
not be sufficicnt. No simple rule can determine when

double precision arithmetic is necessary. However,
experience with the same data sct on an IBM 370

(32-bit words) and CRAY-1 (64-bit words) suggests
that on computers with 32-bit numeric storage units,
double precision arithmetic likely will be necessary for
> 100 samples. Double precision doubles the size of
the distance matrix, and on smaller computers the
above modifications for overlaying the distance and
data matrices also may become necessary. The follow-
ing modifications to the program will invoke double
precision arithmetic where necessary.

Insert after line 34:

DOUBLE PRECISION D,DSHORT,DSQD
Insert after lines 273 and 367:
DOUBLE PRECISION D,DSHORT,DE,
E,UPDATE
Replace lines 317-319 and 414416 with:
ESS(NAMP) = ESS(NAMP)+ ESS(NAMQ)
+ REAL(DE)
ES(ITER,1) = REAL(DE)
ES(ITER,2) = REAL(E)
Replace line 465 with:
DOUBLE PRECISION FUNCTION UPDATE(R)
[osert after line 471:
DOUBLE PRECISION D,DSHORT,D2
Replace line 480 with:
DOUBLE PRECISION FUNCTION D2(1,J)
Insert after line 48S:

DOUBLE PRECISION D
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APPENDIX 1
Computer Program CONISS

THIS PROGRAM CARRIES OUT AN INCREMENTAL SUM OF SQUARES CLUSTER

AS AN OPTION, THE
THE GENERAL
(HIERARCHICAL GROUPING TO
JOURNAL OF THE AMERICAN

STATISTICAL ASSOCIATION 58:236-2L4; 1963), AND THE ALGORITHM 1S
THAT OF D. WISHART (AN ALGOR!THM FOR HIERARCHICAL CLASSIFICATIONS.

SAMPLE (LEVEL) AND CAN BE COUNTS, PERCENTS,

1. PROGRAM CONISS

2. kAR

2. ki % CONSTRAINED INCREMENTAL SUM OF SQUARES CLUSTER ANALYSIS
. kkk

5. *kkh BY ERIC C. GRIMM

6. Hkk

7. Rk

B. ik ANALYS!S OF STRATIGRAPHIC DATA, CONSTRAINED SO THAT ONLY
G. hikk STRATIGRAPHICALLY ADJACENT CLUSTERS ARE MERGED.

10, Hkk PROGRAM WILL ALSO PERFORM AN UNCONSTRAINED ANALYSIS.

11, kkx METHOD IS THAT OF J. H. WARD, JR.

12,  ##n OPTIMIZE AN OBJECTIVE FUNCTION.

13, #rk

14, *ik

15, *%%k& BIOMETRICS 25:165-170;: 1969).

16, *®#n

17. ik INPUT DATA ARE READ BY

18, kan OR PROPORTIONS.

19,  %an
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*k%x  CONTROL CARDS ARE READ FROM UNIT 5.
*%%  DATA ARE READ FROM UNIT 1.
*xk%  RESULTS ARE WRITTEN TO UNIT 6.

#xx  DATA ARE WRITTEN TO UNIT 7, IF REQUIRED.
£.3.4]
Rk &k
ek

PARAMETER (MAXV=25,MAXL=150,MXDM=11175)
£ 3.2

kkk,,  MAXV = MAXiMUM NUMBER OF VARIABLES PERMITTED; MUST BE AT LEAST 12
k%, MAXL = MAXIMUM NUMBER OF SAMPLES PERMITTED
ki, MXDM = SIZE OF DISTANCE MATRIX: (MAXL*(MAXL-1))/2

L. $. 1
COMMON D (MXDM) ,NCLUS (MAXL) ,NAME (MAXL)
COMMON /B1/P,Q,NP,NQ,DSHORT
DIMENSION X (MAXV,MAXL) ,Z (MAXL,MAXV) ,N (MAXL,MAXV)
EQUIVALENCE (X,Z,.N)
DIMENSION YLEVS (MAXL)
CHARACTER CCARD*B0O,FMTIN®GL,FMTOUT*6L
LOGICAL PROP,PERC,COUNTS,SRT,STAND,NORM,PLOT,WOUT,CON
DATA SRT,STAND,NORM,COUNTS,PERC,PROP,PLOT,WOUT/8% FALSE./
DATA CON/.TRUE./
DATA FMTIN/' (F5.0,5X,10F7.2,/(10X,10F7.2)) "/
DATA FMTQUT/’ (FB.2,2X,5E1L.6,/ (10X, 5E14.6)) '/
eyt
WRITE (6.'(A,//5X,A)') '1','PROGRAM CONISS'
b33
#rk, READ CONTROL CARDS
skt

10 READ (5,' (A)',END=11) CCARD
IF {(CCARD(1:19) .EQ. 'NUMBER OF SAMPLES =') THEN
READ (CCARD (20:27),' (BN,18) ') NLEVS
WRITE (6,'(//5X,A,16)') 'NUMBER OF SAMPLES =' . NLEVS
FF (NLEVS .GT. MAXL) THEN
WRITE (6,'(//8,16,/8)")

+ ' RkxNUMBER OF SAMPLES EXCEEDS MAXIMUM ALLOWED: ', MAXL,
+ ' rrnEXECUTION TERMINATED'
STOP
ENDIF
ELSEIF (CCARD({1:21) .EQ. 'NUMBER OF VARIABLES «') THEN
READ (CCARD(22:29),'(BN,18)') NVARS
WRITE (6,' (/5%X,A,16)') 'NUMBER OF VARIABLES =',NVARS
IF (NVARS .GT. MAXV) THEN
WRITE (6,'({//A,16,/A)")
+ ' WRANUMBER OF VARIABLES EXCEEDS MAXIMUM ALLOWED:',MAXV,
+ ' AXREXECUTION TERMINATED'
STOP
ENDIF
ELSEIF (CCARD .EQ. 'DATA ARE COUNTS') THEN
COUNTS = ,TRUE.

WRITE (6,'(/5X,A)') 'INPUT DATA ARE COUNTS'
ELSEIF (CCARD .EQ. 'DATA ARE PERCENTAGES') THEN

PERC = .TRUE.

WRITE (6,' (/5X,A)') 'INPUT DATA ARE PERCENTAGES'
ELSEIF (CCARD .EQ. 'DATA ARE PROPORTIONS') THEN

WRITE (6,' (/5X,A)*) 'INPUT DATA ARE PROPORTIONS'

ELSEIF (CCARD .£Q.

PROP = . TRUE.

ELSEIF (CCARD .EQ.

SRT = ,TRUE.

ELSEIF (CCARD .EQ.

STAND = ,TRUE.

ELSEIF (CCARD .EQ.

NORM = .TRUE.

ELSEIF (CCARD(1:14)

'CONVERT DATA TO PROPORTIONS') THEN
'SQUARE ROOT TRANSFORMATION') THEN
'STANDARDIZE VARIABLES') THEN
'NORMALIZE SAMPLES') THEN

LEQ. 'INPUT FORMAT =') THEN

FMTIN = CCARD (15:78)

ELSEIF (CCARD(1:15)

.EQ. 'OUTPUT FORMAT =') THEN

FMTOUT = CCARD(16:79)

ELSEIF (CCARD .EQ.

CON = _FALSE.

ELSEIF (CCARD .EQ.

CON = .TRUE.

ELSEIF (CCARD .EQ.

WOUT = .TRUE.

ELSEIF (CCARD .EQ.

"UNCONSTRAINED') THEN
'CONSTRAINED') THEN
'"WRITE DATA') THEN

'PLOT DENDROGRAM') THEN



128:

145,
146.
7.

ISO:

156.

159.
160.
161,
162.
163.
164,
165.
166.
167.
168.
169.
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PLOT = .TRUE.

G070 11
ELSE
WRITE (6,'(//2A,/0)")
+ ' *xxCONTROL CARD NOT UNDERSTO00D: ',CCARD,
+ ' wxxEXECUTION TERMINATED'
sTOP
ENDIF
GOTO 10
11 CONTINUE

IF (NLEVSANVARS .GT. MXDM) THEN
WRITE (6,'(//A,/4,110,/4)")

+ ' #%x%ARRAY SPACE REQUIRED (NO. SAMPLES * NO. VARIABLES)',
+ 'EXCEEDS ARRAY SPACE ALLOTTED:',MXDM,
+ ' ARAEXECUTION TERMINATED'
STOP
ENODIF
D0 20 I=1,NLEVS
NAME (1) = 1
20 CONTINUE
e feh
*hx, . READ DATA
fkk
WRITE (6,'(/5X,2R) ') 'FORMAT OF INPUT DATA: ' FMTIN
00 30 t=1,NLEVS
READ (1,FMTIN) YLEVS (1), (X(J,1),J=1,NVARS)
30 CONTINUE
kR

#%k, , .CONVERT TO PROPORTIONS IF NECESSARY
ek
IF (PROP) THEN
IF (COUNTS) THEN
DO 60 J=1!,NLEVS
SUM = 0.0
DO LO I=1,NVARS
SUM = SUM+X (I,J)
Lo CONTINUE
00 50 I=1,NVARS
X(1,d) = X(1,J)/Sum
50 CONT I NUE
60 CONTINUE
WRITE (6,'(/5X,A)') 'DATA CONVERTED TO PROPORTIONS'’
ELSEIF (PERC) THEN
00 80 J=1,NLEVS
DO 70 I=1,NVARS
X{r,J) = 0.01%x(1,J)

10 CONT INUE
8o CONTINUE
WRITE (6,'(/5X,A)') 'DATA CONVERTED TO PROPORTIONS'
ENDIF
ENDIF

kitk
®iek, ,  TRANSFORM DATA IF NECESSARY
fehed

IF (SRT) THEN
00 100 J=1,NLEVS
DO 90 I=1,NVARS
X(1,J) = SQRT(X(t,))
90 CONTINUE -
100 CONTINUE
WRITE (6,'(/5X,A)') 'SQUARE ROOT TRANSFORMATION'
IF (PROP .OR. PERC) WRITE (6,'(/5X,2A)")
+ 'OISSIMILARITY COEFICIENT IS EDWARDS AND CAVALLI-SFORZA''S',
+ ' CHORD DISTANCE'
ELSEIF (STAND) THEN
XLEVS = REAL (NLEVS)
XLEVS] = XLEVS-1.0
00 130 I=1,NVARS
SX = 0.0
$X2 = 0.0
DO 110 J=1,NLEVS
XiJ = x(1,J)
SX = SX+X1J
SX2 = SX2+X1JkXI1J
110 CONTINUE
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191.
192.
193.
194,
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243,
244,

E. C. GrRiMM

IF (SX .GT. 0.0) THEN
XBAR = SX/XLEVS
SD = SQRT ({SX2-SXxSX/XLEVS) /XLEVS]I)
D0 120 J=1,NLEVS
x{1,J) = (x{1,J)~XBAR) /SD

120 CONTINUE
ENDIF
130 CONT I NUE
WRITE (6,'(/5X,A,//5X,24)"')
+ 'VARIABLES STANDARD!ZED TO MEAN O, STANDARD DEVIATION 1',
+ 'DISSIMILARITY COEFICIENT IS STANDARDIZED EUCLIDIAN °,
+ ‘DISTANCE'

ELSEIF (NORM) THEN
DO 160 J=1,NLEVS
$X2 = 0.0
DO 140 1=1,NVARS
XtJd = x(1,J)
SX2 = SX24X1JkX|J
140 CONTINUE
SX = SQRT (5x2)
DO 150 I=1,NVARS
x{1,d) = x(1,J) /5%

150 CONTiNUE
160 CONT INUE
WRITE (6.'(/5X,A,//5X,A)")
+ *SAMPLE VECTORS NORMALIZED TO LENGTH 1',
+ "DISSIMILARITY COEFICIENT IS ORLOCI''S CHORD D)STANCE'
ELSE
WRITE (6,' (/SX,A,//5%,A)') 'NO DATA TRANSFORMATION',
+ "DISSIMILARITY COEFICIENT 1S EUCLIDIAN DISTANCE'
ENDIF
L33
Wk, WRITE OUT DATA IF NECESSARY
fere

IF (WOUT) THEN
DO 170 =1, ,NLEVS
WRITE (7.FMTOUT) YLEVS (1), (X(J,!).,J=1,6NVARS)
170 CONTINUE
ENDIF
et
#ik,, GENERATE DISTANCE MATRIX
fevet
ID =0
D0 200 i=2,NLEVS
00 190 J=1,1-1
0SQD = 0.0
DO 180 K=1,NVARS
DSQD = DSQO+ (X (K. 1) =X {K,J)) **2
180 CONT INUE
ID = |D+]
D(1D) = DSQD
190  CONTINUE
200 CONTINUE

fkk
k&%,  CLUSTER
3.1
IF (CON) THEN ‘
CALL CCLUS(NLEVS,Z(1,1),Z(1.5),N(1,6),N(1,7})
WRITE (6,'(A,//5X,8)') "1,
+ G 'CONSTRAINED INCREMENTAL SUM OF SQUARES CLUSTER ANALYSIS'
ELSE
CALL UCLUS (NLEVS,Z(1,1),Z(1,5) . N{1,6).N(1,7))
WRITE (6,'(A,//5%.A)') *1',
+ 'UNCONSTRAINED INCREMENTAL SUM OF SQUARES CLUSTER ANALYSIS'
ENDIF
Rk
Ak, WRITE RESULTS
fkk

WRITE (6,'(//T69,A,/T55,A,T69,A,/T15,A.T27 A, Th1,A,T55,A,T69,4A,
+ /T5,A,TI5,A,2X, 4 (4X,A)/) ') '"MEAN', 'WITHIN=', 'WITHIN=*,
+ 'CLUSTERS','INCREASE IN','TOTAL','CLUSTER','CLUSTER', 'STAGE',
+ 'MERGED','DISPERSION','DISPERSION', 'DISPERSION', 'DISPERSION’
D0 210 =), NLEVS-1
WRITE (6,' (5X,14,2X,215,2X,4E14.7) ")
+ FoN(EE) N, D), (Z(1,39) ,um), k)
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304.
3os.
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308.
309.
310.
3N,
312,
313,
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315.
316.
317.
318.
319,

210

220

£ 3.3
fefert

%Rt

Rk
ik
fefekk

e et
Atk
L3124
Kt

Kok
Rieh,
Rih

10

20

)
hk
Rk

*kk
Rk
3.2

30

Kk
ok,
Rk
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CONTINUE
WRITE (6,'(A,//5X,A/)"') *1','SAMPLE NUMBERS'
DO 220 I=1,NLEVS
WRITE (6,'(S5X,14,F10.2)"') 1,YLEVS (i)
CONTINUE
If (.NOT. CON) THEN
CALL DORDER (NLEVS,MAXL,N(1,6),N(1,7).,N(1,8),N(2,9) ,N(1,10),
ENDIF

.PLOT DENDROGRAM

IF (PLOT) THEN
CALL DDGRAM(NLEVS.YLEVS.Z(1.1),2(1,5) ,N(1,6),N(1,7) ,N(1,8).
+ N(1,9),Z(1,10),Z(1,11) ,MAXL,CON)
END!F
STOP
END

.................................................................

SUBROUTINE CCLUS (NLEVS,ES,ESS,NAMEP,NAMEQ)

CONSTRAINED CLUSTER ANALYSIS

PARAMETER (MAXL=150,MXDM=11175)

COMMON D (MXDM) ,NCLUS (MAXL) ,NAME (MAXL)
COMMON /B1/P,Q,NP,NQ,DSHORT

DIMENSION ES (MAXL,4)

DIMENSION NAMEP (MAXL) ,NAMEQ{MAXL) ,ESS (MAXL)
INTEGER P,Q.R

LINITIALIZE ARRAYS AND VARIABLES

DO 10 I=1,MAXL
NCLUS (1) = 1

CONTINUE

00 20 I=1,MAXL
ESS(1) = 0.0

CONTINUE

MSI1Z = NLEVS-1

E=0.0

BEGIN CLUSTERING
D0 100 ITER=1,MS12Z
««.FIND MOST SIMILAR CLUSTERS

DSHORT = D (1)
Pe)
1D = 1
DO 30 N=2,MSI2Z
10 = {D+N
IF (D(1D) .LT. DSHORT) THEN
DSHORT = D (1D)
PeN
ENDIF
CONT INUE
Q = P+]
NAMP = NAME (P)
NAMQ = NAME (Q)
NAMEP (ITER) = NAMP
NAMEQ(ITER) = NAMQ
NP = NCLUS (NAMP)
NQ = NCLUS (NAMQ)

«..CALCULATE MERGE DATA

DE = O.5%DSHORT

E = E+DE

ESS (NAMP) = ESS (NAMP) +ESS (NAMQ) +DE
ES(ITER,1) = DE

ES(ITER,2) = E

25
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ES(ITER,3) = ESS (NAMP)
ES (ITER,4) = ESS (NAMP) /REAL (NP+NQ)

..UPDATE DISTANCE MATRIX

Ip = (P-1)%(P-2)/2
1@ = (Q-1)%(Q-2) /2
D0 50 J=1,P-)
1D = IP+J
D{1D) = UPDATE (J)
DO 4O i=Q,MS12
1J = J+(1=-1)%(1-2)/2
11 = (J+1-]
0(1J) =D(11Y)
CONTINUE
CONTINUE
IR = 1Q-Q+2
DO 60 1=Q.MS(2Z
IR = {R+1-2
1D = [R+P
D(1D) = UPDATE (1+1)
CONTINUE
00 80 J=Q,MSIZ-1
DO 70 1=J+1,MS12
1J = J+(1-1)%(1-2) /2

11J = 1441
0(1J) = 0(119)
CONTINUE
CONTINUE

D0 90 M=Q,MSIZ
NAME (M) = NAME (M+1)
CONTINUE
NCLUS (NAMP) = NP+NQ
MSIZ = MS{Z~1
CONTINUE
RETURN
END

------------------------------------------------------------------

SUBROUTINE UCLUS (NLEVS,ES,ESS,NAMEP,NAMEQ)
UNCONSTRAINED CLUSTER ANALYSIS

PARAMETER (MAXL=150,MXDM=11175)

COMMON D (MXDM) ,NCLUS (MAXL) ,NAME (MAXL)
COMMON /B1/P,Q,NP,NQ,DSHORT

DIMENSION ES (MAXL,4)

DIMENSION NAMEP (MAXL) ,NAMEQ (MAXL) ,ESS (MAXL)
INTEGER P,Q,R

««INITIALIZE ARRAYS AND VARIABLES

00 10 1=1,MAXL
NCLUS (1) = 1

CONT I NUE

DO 20 I=1,MAXL
ESS (1) = 0.0

CONT I NUE

MS1Z = NLEVS-!

E=0.0

«.BEGIN CLUSTERING

DO 200 ITER=I,MSIZ
..FIND MOST SIMILAR CLUSTERS

DSHORT = 0 (1)

P oal

Q=2

D =1

DO 4O 1=3,MS1Z+1
00 30 J=1,1-1



395.
396.
397.
398.
399.
L00.
401,
Lo2.
403.
LOL.
Los.
Loé.
Lo7.
408.
Log.
Lio.
L.

Lk,
W15,

Ll
45,
L6,
YR
Lu8.
kg,
450.
us1,
452,
453,
L5k,
L5s,
L56.
457,
L58.
459.
L60.
w61,
L62.
L63.
Wb,
L65.
Lé6,
L67.
L68.
L69.

Stratigraphically constrained cluster analysis

10 = 1D+]
IF (D(1D) .LT. DSHORT) THEN
DSHORT = D(1D)
P =
- |
ENDIF
30 CONT INUE
LD  CONTINUE
NAMP = NAME (P)
NAMQ = NAME (Q)
NAMEP (1TER) = NAMP
NAMEQ (1 TER) = NAMQ
NP = NCLUS (NAMP)
NQ = NCLUS (NAMQ)

Rkk, ..., CALCULATE MERGE DATA

DE = 0.5ADSHORT
£ = E+DE

€SS (NAMP) = ESS (NAMP) +ESS (NAMQ) +DE
ES(ITER,1) = DE

ES(ITER,2) = E

ES(ITER,3) = ESS(NAMP)

ES(ITER,4) = ESS (NAMP) /REAL (NP+NQ)

RAR
Aak,, ... UPDATE DISTANCE MATRIX
RRR
1P = (P-1)%(P-2)/2
00 60 J=),P-)
1D = |P+J
0(10) = UPDATE (J)
00 50 |=Q,MS1Z
1Jw J+(1=1)%(1-2)/2
110 = 1J+1-1
D(1J) = D(11J)
50 CONT INUE
60  CONTINUE
00 70 1eP+1,Q-1
1D = P+(1=1)%(1-2)/2
D(ID) = UPDATE(I)
70 CONTINUE
00 80 1=Q,MS12Z
10 = P+(1=1)%(1-2)/2
D (ID) = UPDATE (1+1)
80  CONTINUE
00 100 J=P+1,Q-1}
00 90 I=Q,MS1Z
1J & J+(1=1)*(1-2)/2

11 = [J+i-]
D(1J) = 0(11J)
90 CONTINUE

100 CONTINUE
DO 120 J=Q,MSIZ-1
D0 110 I=J+1,MSIZ
1 = J+(1=1)%(1-2) /2

11 = 1J+!
0(1J) =D(11D)
110 CONTINUE

120 CONTINUE
DO 130 M=Q,MSIZ
NAME (M) = NAME (M+1)
130 CONTINUE
NCLUS (NAMP) = NP+NQ

MSI1Z = MSIZ-1
200 CONTINUE

RETURN

END
feedh
RN  cccmcccmcececcmccccccacccccc e m st e et e e e e -
12,33

FUNCTION UPDATE (R)
1381

hikk,, THIS FUNCTION SOLVES THE UPDATE EQUATION
* ek

PARAMETER (MAXL=150.MXDM=11175)
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480.
481,
L82.
L83,
L84,
L8s.
486.
487.
488.
489.
490.
491.
L92.

49k,
L96.

531.

537.
538.

540.
sk,
542,
543.
Shl.

E. C. GrumMm

COMMON D (MXDM) ,NCLUS (MAXL) ,NAME (MAXL)

COMMON /B1/P,Q,NP,NQ, DSHORT

INTEGER P,Q,R

NR = NCLUS (NAME (R))

UPDATE = ((NR+NP) %02 (R,P)+ (NR+NQ) *D2 (R, Q) ~NR*DSHORT) / (NR+NP+NQ)

RETURN
END
hkk
ARR —momemremecccemmeececmeGessmareeeseceefmmvemeeesemev-mmeecscecsescc-
b 2 .84 )
FUNCTION D2(1,J)
Rk

*#xk,., . THIS FUNCTION LOCATES VALUE IN LOWER HALF MATRIX
£ 3.2
PARAMETER (MAXL=150,MXDM=11175)
COMMON D (MXDM)
1F (1 .GT. J) THEN
1D = (1=1)*(1-2) /244

ELSE
10 = (J=1)%(J-2) /2+!

ENDIF

D2 = 0(iD)

RETURN

END
hkk
RRR  ccmecccvdeccccacas D L Y ettt abaabahh et b dededabbede b ded
hik

SUBROUT INE DORDER (NLEVS,MAXL,!P,JP,NORD,IL,JL,LAST,NEXT)
Rk

k%% THIS SUBROUTINE ESTABLISHES THE ORDER OF SAMPLES ON THE

**%  DENDROGRAM FOR UNCONSTRAINED CLUSTER ANALYSIS. THE ALGORITHA iS§
#kx  ADAPTED FROM SUBROUTINE TREE IN M, R. ANDERBERG (CLUSTER ANALYSIS
#kk  FOR APPLICATIONS, ACADEMIC PRESS, NEW YORK. 1973).

L2 ]
ARk

DIMENSION 1P (MAXL) ,JP (MAXL), L (MAXL) ,JL (MAXL) .NORD (MAXL) ,
+ LAST (MAXL) ,NEXT (0:MAXL=1)
kK
N « NLEVS-1
DO 10 K=1,NLEVS
LAST(K) = 0
NORD (K) = ©
10 CONTINUE
00 20 K=1,N
IK = IP(K)
JK = JP(K)
IL(K) = LAST(IK)
JL(K) = LAST(JK)
LAST (1K) = K
NEXT (1L (K))
NEXT (JL (K} )
20 CONTINUE
NEXT(N) = 0
K =1
NO = O
30 IK = IP(K)
JK = JP(K)
IF (IL(K) .EQ. O) THEN
NO = NO+I
NORD (NO) = 1K
ENDIF
IF (JL(K) .EQ. O) THEN
NO = NO+I1
NORD (NO) = JK
ENDIF
KLAST = K
K = NEXT (K)
IF (K .LE. N .AND. K .GE., 1) THEN
IF (IL(K) .LE. O) THEN
IL{k) = =1L(K)
GOTO 30
ENDIF
IfF (JL(K) .LE. O) THEN
JL(K) = -JL (K}
GOTO 30

K
K



590.

595.
596.
597.
598.
599.
600.
601.
602.
603.
604.
605.
606.
607.
608.

610,
612,

619.

Lo

Rk
Ri%,,
kkk

Ak

f ik
fekk

Kk
fedede
ek
Rk
fedede

#ik
wkik,
ki

10

20
RAR
ARk,
P

kkk
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ENDIF

IF (IL{K) .NE. KLAST) THEN
JL(K) = ~JL (K)
K = 1L(K)

1IL(K) = =1L (K)
K = JL(K)
ENDIF
ILK = iL(K)
JLK = JL{K)
IF (ILK .LT. JLK) THEN
1F {(ILK .EQ. O) THEN
K = JLK
ELSE
K = jLK
ENDIF
ELSEIF (ILK .GT. JLK) THEN
IF (JLK .EQ. O) THEN
K= (LK
ELSE
K = JLK
ENDIF
ELSE
GOTO 30
ENDIF
GOTO 40
ENDIF

.WRITE SAMPLE ORDER

WRITE (6,'(A,//5X,A/)"') '1','ORDER OF SAMPLES ON DENDROGRAM'
WRITE (6.'(2014) ') (NORD(1),I=1,NO)

RETURN

END

SUBROUTINE DOGRAM(NLEVS,YLEVS,ES,DEPTHS,IP,JP,NORD,IPOS,Y,.XDD,
+ MAXL,CON)

THIS SUBROUTINE PLOTS A DENDROGRAM WITH THE DISSPLA GRAPHICS
PACKAGE .

DIMENSION ES (MAXL,L) ,DEPTHS (MAXL), 1P (MAXL) ,JP (MAXL) ,NORD (MAXL),
+ 1POS (MAXL) ,Y (MAXL) ,XDD (MAXL) , YLEVS (MAXL)

CHARACTER CCARD*BO,LXNAME (4) %48

LOGICAL DEFLT,CON

DATA DEFLT/.TRUE./

DATA LXNAME (1) /' INCREASE IN DISPERSIONS'/

DATA LXNAME (2) /'TOTAL DISPERSIONS'/

DATA LXNAME (3) /'WITHIN-CLUSTER DISPERSIONS'/

DATA LXNAME (L) /'MEAN WITHIN-CLUSTER DISPERSIONS'/

DATA HITE,XAX!S,YAX15/0.10,4.0,10.0/

DATA XAX1S!,XORGN/0.0,2.0/

LINITIALIZE DEPTHS (Y-AXIS VALUES)

IF (CON) THEN
00 10 I=},NLEVS
DEPTHS (1) = YLEVS(I)
CONTINUE
ELSE
DO 20 I=],NLEVS
DEPTHS (1) = REAL (1)
CONT I NUE
ENDIF

LINITIALIZE DISSPLA.  THIS CALL IS INSTALLATION DEPENDENT.
CALL MNPLOT
CALL RESET('ALL')

CALL NOBRDR
CALL PAGE (100.0,14.08)



620.
621.
622.
623.
624.
625.
626.
627.
628.
629.
630.
631.
632.
633.
63k,
635.
636.
637.
638.
639.
640.
641,
642,
643,
TR
65,
646,
64L7.
64L8.
649,
650.
651,
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654 .
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657.
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660.
661,
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664,
665.
666.
667.
668.
669.
670.
671.
672.
673.
674.
675.
676.
6771.
678.
679.
680.
681.
682.
683.
684.
685,
686.
687.
688.
689.
690.
691,
692.
693.
694,
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k%
*xk, ARGUMENTS IN CALL TO PAGE ARE DEPENDENT ON PLOTTING DEVICE.
L 1.2 4
k%, . READ CONTROL CARDS
b33 4
IGR = |
30 READ (5,'(A)',END=LO) CCARD
IF (CCARD(1:8) .EQ. 'HEIGHT =') THEN
READ (CCARD(9:16),' (BN,FB.0)') XAXIS
ELSEIF (CCARD(1:7) .EQ. 'WIDTH =') THEN
READ (CCARD (8:15),' (BN,FB.0)') YAXIS
ELSEIF (CCARD(1:7) .EQ. 'SCALE =') THEN
READ (CCARD(B:15),'(BN,18)"') ISCALE
DEFLT = .FALSE.

k%
REE, ..., «.PLOT DEPTH COLUMN
kR
1F (CON .AND. IGR .EQ. 1) THEN
CALL DEPCOL (NLEVS,DEPTHS,XORGN,XAXIS) YAX!S, HITE,MAXL)
IGR = 2
ENDIF
"R
*k%,,.......PLOT TREE
*ikk
CALL TREE (NLEVS,XAX!S,XORGN,XAXIS1,YAXIS,DEPTHS, IP,JP NORD,
+ IPOS,ES (1, ISCALE) ,Y,.XDD, IGR, LXNAME (1SCALE) ,HITE,MAXL, CON)
IGR = IGR+1
ELSEIF (CCARD(!':19) .EQ. 'CHARACTER HEIGHT = ') THEN
READ (CCARD(20:27),'(BN,F8.0)') HITE
ELSE
WRITE (6,'(//24,/8)")
+ ' RRAPLOTTING CONTROL CARD NOT UNDERSTO0D: ',CCARD,
+ ' ARYEXECUTION TERMINATED'
sTOP
ENDIF
GOTO 30
LO CONTINUE
etk
wkk, . IF SCALE NOT SPECIFIED, PLOT DEFAULT DENDROGRAM,
(3123
If (DEFLT) THEN
IF (CON) THEN
CALL DEPCOL (NLEVS,DEPTHS,XORGN,XAXK!S1,YAXIS,HITE,MAXL)
IGR = 2
ENDIF
CALL TREE (NLEVS,XAX!S,XORGN,XAXIS1,YAXIS,DEPTHS, P, P ,NORD,
+ 1POS,ES(1,2),Y,XDD, IGR, LXNAME (2) ,HITE,MAXL, CON)
ENDIF
ek
®k%,, TERMINATE PLOT
fededk
CALL ENDPL(1)
CALL DONEPL
RETURN
END
kR
2 L R bttt L L T T
b 3.2
SUBROUTINE TREE (NLEVS,XAX!S,XORGN,XAXIS1,YAXIS,DEPTHS, 1P,JP,NORD,
+ IP0S.X,Y,.XDD, !|GR,LXNAME ,HITE,MAXL,CON)
£.3.3.4
%k THIS SUBROUTINE PLOTS THE TREE
£ 2.3 ] aus
£33
DIMENSION DEPTHS (MAXL) , IP (MAXL) .JP (MAXL) ,X (MAXL),{POS (MAXL),
+ Y (MAXL) ,XARAY (4) , YARAY (L) ,XDD (MAXL) ,NORD (MAXL)
LOGICAL CON
CHARACTER LXNAME=®LS
b3 2.1
ik, SET PARAMETER VALUES
A
DO 10 =1, MAXL
Xop(t) = 0.0
10 CONTINUE

DO 20 f=1,NLEVS
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695. Y(1) = DEPTHS (1)

696. 20 CONTINUE

697. NAMALG = NLEVS-1

698. TDEPTH = DEPTHS (NLEVS) -DEPTHS (1)
699. kxk

700. #nx,, DETERMINE MAXIMUM VALUE STEP SiZE FOR TREE
701, ka#

j02. XMAX = X (NAMALG)

703. DO 30 I=1,NAMALG-!

70L. IF (X{1) .GT. XMAX) Xmax = x{I)
705. 30 CONTINUE

706. XF = 1,0E-10

707. DO LO 1=1,100

708. XF = XF%10.0

709. IF (XF .GT. XMAX) GOTC 50
710. 4O CONTINUE

AR 50 XSTP = Q. 1%XF

712. IF (3.0%XSTP .GT. XMAX) THEN
713. XSTP = 0.5%XSTP

AT ELSEIF (7.0%XSTP .LT. XMAX) THEN
715. XSTP = 2.0%XSTP

716. ENDIF

717. XF = 0.0

718, 00 60 1=1,10

719. XF = XF+XSTP

720. IF (XF .GT. XMAX) THEN
721, XMAX = XF

722. GOTO 70

723. ENDIF

724, 60 CONTINUE

725. xR

726. #k%x,, SETUP SUBPLOT

727. k%

728, 70 iF (CON) THEN

729. XORGN = XORGN+XAX1S140.3
730. CALL PHYSOR (XORGN,0.8)
731, ELSE

732. XORGN = XORGN+YAX!S+2.0
733. CALL PHYSOR (XORGN,0.0)
734. CALL BANGLE (90.0)

735. ENDIF

736. XAXIS] = XAXIS+1.0

737. YAXIST = YAXIS+0.15

738. CALL AREA20 (XAXISV,YAXISI)
739. hnk

740, %k, SETUP AXIS SYSTEM

741, wRsk

742, XORIG = =-XMAX/XAXIS

743, YORIG = DEPTHS (NLEVS)+0.15#TDEPTH/YAXIS
744, YMAX @ DEPTHS (1)

JL5. CALL XTICKS(0)

L6, CALL YT!ICKS (0)

Ju7. CALL XNONUM

748, CALL YNONUM

749. YSTP = (YMAX-YORIG)/10.0
750. CALL GRAF (XOR!G,XSTP,XMAX,YORIG,YSTP, YMAX)
751, #hk

752. #kk_ . PLOT TREE

753. #rn

754, IF (CON) THEN

155. ,00 80 1=1,NLEVS

756. 1POS (1) = |

157. 80 CONTINUE

758. ELSE

759. 0O 90 I=1,NLEVS

760. IPOS(NORD (1)) = 1
761. 90 CONT I NUE

762. ENDIF

763. DO 100 I=1,NAMALG

76L., 1P = 1POS(IP(1))

765. JPI = 1POS(JP (1))

766. YI = Y(IPI)

767. YJ = Y (JP1)

768. X) = XDO(1PI)

769. XJ = XDD (JPt)

CAGEO 11:1-C

31



770.
771,
772.
773.
774.
775.
776.
777.
778.
779.
780.
781.
782.
783.
784.
785.
786.
787.
788.
789.
790.
791,
792.
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795.
796.
797.
798.
79S.
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806.
go7.
808.
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812.
813.
814,
815,
816.
817.
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819.
820.
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822.
823.
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825.
826.
827.
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829.
830.
£31.
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835.
836.
837.
838.
839.
8u0.
841,
Bu2.
843.
Bub,

100

Kk
KRk,
kot

fefesk
fk,
Hdek

1o

120
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YARAY (1) = YI
YARAY (2) = VI
YARAY (3) = YJ
YARAY (L) = YU
XARAY (1) = X!
XARAY (2) = x (1)
XARAY (3) = x (1)

XARAY (L) = xJ
CALL CURVE (XARAY,YARAY,L4,0)
Y(IPI) = (YI+YJ)}/2.0
X0D(1PI) = X (1)
CONT I NUE
YROOT = Y (1POS(IP{1-1)))
CALL RLVEC (X (NAMALG) ,YROOT, XMAX, YROOT, 0000)

DRAW X-AXES BELOW AND ABOVE; LABEL GRAPH

CALL RESET ('XNONUM')
CALL HEIGHT (1.4%xHITE)
CALL XTICKS (2)
CALL XINTAX
YPOS = YAXISI1+0.1
IF (CON) THEN
CALL XGRAXS (0.,XSTP,XMAX,XAXIS,' ',1,1.0,0.)
CALL XNONUM
CALL HEIGHT (HITE)
CALL XREVTK
YPOS = YP0S+0.05
ENDIF
CALL XGRAXS (0.,XSTP,XMAX,XAXiS,LXNAME,-100,1.0,YP0OS)

WRITE SAMPLE DEPTHS OR NAMES

If (CON) THEN
CALL MSHIFT(0.0,-0.5%HITE)
YV = DEPTHS (1)
XL = XREAL (YV,1)
XIN = 0,.8-xL
XV = XINVRS (XIN,0.0)
CALL RLREAL(YV,1,XV,YV)
DO 110 =10,NLEVS, 10
YV = DEPTHS (1)
XL = XREAL (YV,1)
XIN = 0.8-xL
XV = XINVRS (XIN,0.0)
CALL RLREAL(YV,1,XV,YV)
CONTINUE
ELSE
H = YAXIS/REAL (NLEVS) -0.03
IF (H .LT. HITE) THEN
CALL HEIGHT (H)
H = -0.5%H
ELSE
CALL HEIGHT (HITE)
H = ~0.5%HITE
ENDIF
CALL MSHIFT(0.0,H)
00 120 I=1,NLEVS
NORD| = NORD(!)
XIN = 0.8-XINT (NORDI)
XV = XINVRS (XIN,0.0)
CALL RLINT(NORDI!,XV,DEPTHS (1))
CONT INUE
ENOIF
CALL ENDGR (IGR)
CALL RESET ('BANGLE"')
CALL RESET('XTICKS')
CALL RESET('YTICKS')
CALL RESET ('XNONUM')
CALL RESET (' YNONUM')
CALL RESET('XINTAX')
CALL RESET ('XREVTK')
CALL RESET('MSHIFT')
CALL RESET ('HEIGHT')
RETURN
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845. END

BLE. kkk

1 B R e T i
BuB8. xxx

849, SUBROUTINE DEPCOL (NLEVS,DEPTHS,XORGN,XAXIS1,YAXIS,HITE,MAXL)
B50. kxx

B851. *%%x  THIS SUBROUTINE PLOTS A DEPTH COLUMN
B52. #x#

B53. xx»

854, DIMENSION DEPTHS (MAXL)

855. #xx

B56. k%%, . _SET PARAMTER VALUES

857, k%

858. H = HITE/2.0

859. H2 = H+0.02

860. H22 = 2.0%H2

861. TDEPTH = DEPTHS (NLEVS) ~DEPTHS (1)
B62. #nx

B863. *%x%,,  DEFINE SUBPLOT AREA

B6bL. #kx

865. CALL PHYSOR (XORGN,0.8)

866. YAXIS] = YAXiS+0.25

867. XAX1S) = 0.6

868. CALL AREA2D (XAXIST,YAXIS1)

869. #nx

870. k%, DEFINE AXES

871, i#xx

872. YORIG = DEPTHS (NLEVS)+0.15%TDEPTH/YAXIS
873. YMAX = DEPTHS (1) -0, IXTDEPTH/YAXIS
874, CALL XTICKS (0)

87s. CALL YTICKS (0)

876. CALL XNONUM

877. CALL YNONUM

878. CALL GRAF(0.0,0,1,0.6,Y0RIG,10.0,YMAX)
879. k%

880. #ax_ , DRAW VERTICAL LINES FOR DEPTH COLUMN
881. #ax

882. CALL VECTOR(0.0,0.0,0.0,YAXIS])

883. CALL VECTOR(0.6,0.0,0.6,YAXISY)

884, fan

885, %k,  BLANK AREAS FOR SAMPLE NUMBERS

886, tni

887. YBLNK = YPOSN (0.0,DEPTHS (1))

888. CALL BLREC(0.2,YBLNK-H2,0.2,H22,0)
889. DO 30 I=10,NLEVS,10

890. YBLNK = YPOSN (0.0,DEPTHS (1))

891, CALL BLREC(0.15,YBLNK-H2,0.3,H22,0)
892, 30 CONTINUE

893, #xx

894. Axx, . DRAW LEVEL LINES

895. axx

896, DO LO |=1,NLEVS

897. CALL RLVEC(0.0,DEPTHS (1),0.6,DEPTHS (1) ,0000)
898. LO CONTINUE

899. #ux

900, k., WRITE SAMPLE NUMBERS

901, ki

902. CALL HE!GHT (MITE)

903. CALL MSHIFT(0.0,~H)

904, CALL BLOFF (1)

905. CALL RLINT(1,0.3,DEPTHS (1))

506. XVAL = 0.3-0.8#HITE

907. 10 = |

908. DO 50 i=10,NLEVS,10

909. ID = 1D+}

910. CALL BLOFF (1D)

911, CALL RLINT{I,XVAL,DEPTHS (1))

912. 50 CONTINUE

913. CALL ENDGR(1)

914, CALL RESET('MSHIFT")

915, CALL RESET('HEIGHT')

916. CALL RESET (*XTICKS')

917. CALL RESET(*YTICKS"')

918. CALL RESET (*XNONUM')

919. CALL RESET ('YNONUM')
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920. RETURN
921. END

APPENDIX 2
Example of Program Input and Output. The Data are the top 12 Levels from the Wolsfeld Lake Core

Control cards

NUMBER OF SAMPLES = 12
NUMBER OF VARIABLES = 17
DATA ARE COUNTS

CONVERT DATA TO PROPORT!ONS
SQUARE ROOT TRANSFORMATION
PLOT DENODROGRAM

CHARACTER HEIGHT = 0.12

MEIGHT = 3.5
WIDTH = 6.0
SCALE = 2
Input data
650. 1.5 1.0 19.0 9.0 10.0 1.0 26.0 226.0 77.0 28.0
650. 15.0 26.0 25.0 83.0 12.0 3.0 12.0
662. 3.5 1.0 8.0 7.0 15.0 2.0 1.0 178.0 69.0 25.0
662. 10.0 16.0 L1.0 M12.0 12.0 18.0 15.0
670. 3.5 0 6.0 L.0 L.0 2.0 11.0 120.0 38.0 19.0
670. 10.0 8.0 2L.0 109.0 6.0 13.0 17.0
680. 2.5 1.0 7.0 3.0 4.0 1.0 25.0 264.0 32.0 4.0
680. 4.0 3o.5 43.0 100.0 17.0 8.0 6.0
690. 4.5 0 9.0 9.0 11.0 3.0 17.0 173.0 30.0 24,0
690. 15.0 16.0 56.0 103.0 13.0 10.0 19.0
702. 1.0 2.0 5.0 5.0 10.0 4.0 17.0 139.0 36.0 39.0
702. L.0 15.0 24,0 79.0 7.0 13.0 12.0
710. 6.5 1.0 21.0 10.0 16.0 4.0 19.0 172.0 k.o 66.0
710, 10.0 18.0 53.0 29.0 13.0 18.0 12.0
AL 1.5 2.0 10.0 8.0 30.0 11.0 9.0 228.0 33.0 88.0
AL'SS 11.0 29.5 65.0 25.0 19.0 13.0 9.0
722, 2.0 6.0 13.0 4.0 11,0 4.0 13.0 254.0 69.0 137.0
722. 20.0 35.0 44,0 15.0 1h.0 10.0 9.0
730. 6.5 2.0 26.0 10.0 22.0 9.0 1L.0 265.0 k9.0 134.0
7130. 27.0 7.0 65.0 11.0 21.0 12.0 1.0
738. 1.5 2.0 24,0 13.0 33.0 8.0 13.0 274.0 66.0 168.0
738, 27.0 6.0 60.0 12.0 20.0 11.0 3.0
JL2, 2.5 3.0 25.0 11.0 28.0 19.0 6.0 238.0 38.0 179.0
Jh2. 17.0 4.0 63.0 28.0 21.0 14.0 11.0

Output data
1

PROGRAM CONISS

NUMBER OF SAMPLES = 12

NUMBER OF VARIABLES = 17

INPUT DATA ARE COUNTS

FORMAT OF INPUT DATA: (F5.0,5X,10F7.2,/(10X,10F7.2))
DATA CONVERTED TO PROPORTIONS

SQUARE ROOT TRANSFORMATION

DISSIMILARITY COEFICIENT 1S EDWARDS AND CAVALL!-SFORZA'S CHORD DISTANCE



Stratigraphically constrained cluster analysis

CONSTRAINED INCREMENTAL SUM OF SQUARES CLUSTER ANALYSIS

CLUSTERS

STAGE MERGED
10
2
10

~NOWENNOON W -

- OW OO W —
—

e B I AV L]

—_—

SAMPLE NUMBERS

650.00
662.00
670.00
680.00
690.00
702.00
710.00
714.00
722.00
730.00
738.00
742.00

N s OW OO WA =

0
0
0
0
0
0.
0
0
0
0
0

INCREASE N
DISPERSION

L LL9U29LE-02
.94 15898E-02
.1351028€-01
.1462318€-01
. 1816634E-01
1905571E-01
.2396281E-01
.2538838£-01
.2574420E-01
.l 16988E-01
.3831516E+00

TOTAL OISPERSION

T

650.0 -

-

/

10— 730.0 !

r T
0.0 0.1

U T 1
0.2 0.3 0.4

00000000000

¥ 0
0.5 0.6

TOTAL
DISPERSION

LbLgh29LE-02
.1391019€-01
.2742047E-01
.4204L365E-01
.6020999E-01
.7926570€-01
.1032285E+00
.1286169£+00
. 15L3611E+00
.1985310€+00
.5816826€+00

WITHIN-
CLUSTER
DISPERSION

b9L29LE-02
.9415898E-02
. 1800L57E-01
.1h62318E-01
.1816634€E-01
.3722205¢E-01
.3337870€-01
.9598913E-01
.4036738E-01
.1025k18£+00
.5816826E+00

MEAN
WITHIN-
CLUSTER
DISPERSION

L2247147€-02
.L70794L9E-02
.6001524LE-02
.7311590E-02
.9083171E-02
.12L0735E-01
.1112623E-01
.1599819¢-01
. 1345579E-01
.1709031E-01
.LBL7355E-01
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